Phỏng vấn một số học sinh khối 11 về thời gian (giờ) ngủ của một buổi tối, thu được bảng số liệu ở bên.  a) So sánh thời gian ngủ trung bình của các bạn học sinh nam và nữ. b) Hãy cho biết


Câu hỏi:

Phỏng vấn một số học sinh khối 11 về thời gian (giờ) ngủ của một buổi tối, thu được bảng số liệu ở bên.

Thời gian

Số học sinh nam

Số học sinh nữ

[4; 5)

6

4

[5; 6)

10

8

[6; 7)

13

10

[7; 8)

9

11

[8; 9)

7

8

 a) So sánh thời gian ngủ trung bình của các bạn học sinh nam và nữ.

b) Hãy cho biết 75% học sinh khối 11 ngủ ít nhất bao nhiêu giờ?

Trả lời:

Lời giải:

a) Trong mỗi khoảng thời gian, giá trị đại diện là trung bình cộng của giá trị hai đầu mút nên ta có bảng sau:

Thời gian

Số học sinh nam

Số học sinh nữ

4,5

6

4

5,5

10

8

6,5

13

10

7,5

9

11

8,5

7

8

Tổng số các bạn nam là n1 = 6 + 10 + 13 + 9 + 7 = 45.

Thời gian ngủ trung bình của các bạn học sinh nam là

\(\overline {{x_1}} = \frac{{6.4,5 + 10.5,5 + 13.6,5 + 9.7,5 + 7.8,5}}{{45}} \approx 6,52\).

Tổng số các bạn nữ là n2 = 4 + 8 + 10 + 11 + 8 = 41.

Thời gian ngủ trung bình của các bạn học sinh nữ là

\(\overline {{x_2}} = \frac{{4.4,5 + 8.5,5 + 10.6,5 + 11.7,5 + 8.8,5}}{{41}} \approx 6,77\).

Vì 6,52 < 6,77 nên thời gian ngủ trung bình của các học sinh nam ít hơn các học sinh nữ.

b) Ta có:

Thời gian

Số học sinh nam

Số học sinh nữ

Số học sinh khối 11

[4; 5)

6

4

10

[5; 6)

10

8

18

[6; 7)

13

10

23

[7; 8)

9

11

20

[8; 9)

7

8

15

 

Tổng số học sinh khối 11 được khảo sát là n = 45 + 41 = 86.

Gọi x1, x2, x3, ..., x86 là thời gian ngủ của các học sinh khối 11 được khảo sát và giả sử dãy này đã sắp xếp theo thứ tự tăng dần. Khi đó trung vị của mẫu số liệu là \(\frac{{{x_{43}} + {x_{44}}}}{2}\).

Do đó, tứ phân vị thứ nhất Q1 là x22. Vì x22 thuộc nhóm [5; 6) nên nhóm này chứa Q1. Do đó, p = 2; a2 = 5; m2 = 18; m1 = 10; a3 – a2 = 6 – 5 = 1 và ta có

\({Q_1} = 5 + \frac{{\frac{{86}}{4} - 10}}{{18}}.1 \approx 5,64\).

Tứ phân vị thứ nhất Q1 chia mẫu số liệu thành 2 phần, phần dưới chiếm 25% số liệu của mẫu và phần trên chiếm 75% số liệu của mẫu.

Vậy 75% học sinh khối 11 ngủ ít nhất 5,64 giờ.

Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết:

Câu 1:

Một cửa hàng đã ghi lại số tiền bán xăng cho 35 khách hàng đi xe máy. Mẫu số liệu gốc có dạng: x1, x2, ..., x35­ trong đó xi là số tiền bán xăng cho khách hàng thứ i. Vì một lí do nào đó, cửa hàng chỉ có mẫu số liệu ghép nhóm dạng sau:

Số tiền (nghìn đồng)

[0; 30)

[30; 60)

[60; 90)

[90; 120)

Số khách hàng

3

15

10

7

Bảng 3.1. Số tiền khách hàng mua xăng

Dựa trên mẫu số liệu ghép nhóm này, làm thế nào để ước lượng các số đặc trưng đo xu thế trung tâm (số trung bình, trung vị, tứ phân vị, mốt) cho mẫu số liệu gốc?

Xem lời giải »


Câu 2:

Khảo sát thời gian tự học của các học sinh trong lớp theo mẫu bên.

Media VietJack

a) Hãy lập bảng thống kê cho mẫu số liệu ghép nhóm thu được.

b) Có thể tính chính xác thời gian tự học trung bình của các học sinh trong lớp không?

c) Có cách nào tính gần đúng thời gian tự học trung bình của các học sinh trong lớp dựa trên mẫu số liệu ghép nhóm này không?

Xem lời giải »


Câu 3:

Tìm hiểu thời gian xem ti vi trong tuần trước (đơn vị: giờ) của một số học sinh thu được kết quả sau:

Thời gian (giờ)

[0; 5)

[5; 10)

[10; 15)

[15; 20)

[20; 25)

Số học sinh

8

16

4

2

2

 Tính thời gian xem ti vi trung bình trong tuần trước của các bạn học sinh này.

Xem lời giải »


Câu 4:

Cho mẫu số liệu ghép nhóm về chiều cao của 21 câu na giống.

Chiều cao (cm)

[0; 5)

[5; 10)

[10; 15)

[15; 20)

Số cây

3

8

7

3

Gọi x1, x2, ..., x21 là chiều cao của các cây giống, đã được sắp xếp theo thứ tự tăng dần. Khi đó, x1, ..., x3 thuộc [0; 5), x4, ..., x11 thuộc [5; 10), ... Hỏi trung vị thuộc nhóm nào?

Xem lời giải »