Giải Toán 11 trang 113 Tập 1 Kết nối tri thức
Haylamdo biên soạn và sưu tầm với Giải Toán 11 trang 113 Tập 1 trong Bài 16: Giới hạn của hàm số Toán lớp 11 Tập 1 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11 trang 113.
Giải Toán 11 trang 113 Tập 1 Kết nối tri thức
Luyện tập 1 trang 113 Toán 11 Tập 1: Tính .
Lời giải:
Do mẫu thức có giới hạn là 0 khi x ⟶ 1 nên ta không thể áp dụng ngay quy tắc tính giới hạn của thương hai hàm số.
Lại có: .
Do đó .
HĐ2 trang 113 Toán 11 Tập 1: Nhận biết khái niệm giới hạn một bên
Cho hàm số .
a) Cho và . Tính yn = f(xn) và y'n = f(x'n).
b) Tìm giới hạn của các dãy số (yn) và (y'n).
c) Cho các dãy số (xn) và (x'n) bất kì sao cho xn < 1 < x'n và xn ⟶ 1, x'n ⟶ 1, tính và .
Lời giải:
a) Ta có: với mọi n với mọi n.
Do đó,
Ta cũng có: với mọi n ⇒ x'n – 1 > 0 với mọi n.
Do đó,
b) Ta có ; .
c) Ta có:
Vì xn < 1 < x'n, suy ra xn – 1 < 0 và x'n – 1 > 0 với mọi n.
Do đó, f(xn) = – 1 và f(x'n) = 1.
Vậy = – 1 và = 1.
Luyện tập 2 trang 113 Toán 11 Tập 1: Cho hàm số
Tính , và .
Lời giải:
Với dãy số (xn) bất kì sao cho xn < 0 và xn ⟶ 0, ta có f(xn) = – xn.
Do đó .
Tương tự, với dãy số (xn) bất kì sao cho xn > 0 và xn ⟶ 0, ta có f(xn) = .
Do đó .
Khi đó, = = 0. Vậy = 0.
HĐ3 trang 114 Toán 11 Tập 1: Nhận biết khái niệm giới hạn tại vô cực
Cho hàm số có đồ thị như Hình 5.4.
Giả sử (xn) là dãy số sao cho xn > 1, xn ⟶ +∞. Tính f(xn) và tìm .
Lời giải:
Với (xn) là dãy số sao cho xn > 1, xn ⟶ +∞.
Ta có: .
Khi xn ⟶ +∞ thì .
Do đó .
Lời giải bài tập Toán 11 Bài 16: Giới hạn của hàm số Kết nối tri thức hay khác: