Viết năm số hạng đầu của mỗi dãy số (un) sau và xét xem nó có phải là cấp số cộng không. Nếu dãy số đó là cấp số cộng, hãy tìm công sai d và viết số hạng tổng quát của nó dưới dạng un = u1 +


Câu hỏi:

Viết năm số hạng đầu của mỗi dãy số (un) sau và xét xem nó có phải là cấp số cộng không. Nếu dãy số đó là cấp số cộng, hãy tìm công sai d và viết số hạng tổng quát của nó dưới dạng un = u1 + (n – 1)d.

a) un = 3 + 5n;

b) un = 6n – 4;

c) u1 = 2, un = un – 1 + n;

d) u1 = 2, un = un – 1 + 3.

Trả lời:

Lời giải:

a) un = 3 + 5n

+) Năm số hạng đầu của dãy số (un) là:

u1 = 3 + 5 . 1 = 8;

u2 = 3 + 5 . 2 = 13;

u3 = 3 + 5 . 3 = 18;

u4 = 3 + 5 . 4 = 23;

u5 = 3 + 5 . 5 = 28.

+) Ta có: un – un – 1 = (3 + 5n) – [3 + 5(n – 1)] = 5, với mọi n ≥ 2.

Do đó dãy số (un) là một cấp số cộng với số hạng đầu u1 = 8 và công sai d = 5.

Số hạng tổng quát của cấp số cộng này là un = u1 + (n – 1)d = 8 + (n – 1). 5.

b) un = 6n – 4

+) Năm số hạng đầu của dãy số (un) là:

u1 = 6 . 1 – 4 = 2;

u2 = 6 . 2 – 4 = 8;

u3 = 6 . 3 – 4 = 14;

u4 = 6 . 4 – 4 = 20;

u5 = 6 . 5 – 4 = 26.

+) Ta có: un – un – 1 = (6n – 4) – [6(n – 1) – 4] = 6, với mọi n ≥ 2.

Do đó dãy số (un) là một cấp số cộng với số hạng đầu u1 = 2 và công sai d = 6.

Số hạng tổng quát của cấp số cộng này là un = u1 + (n – 1)d = 2 + (n – 1). 6.

c) u1 = 2, un = un – 1 + n

+) Năm số hạng đầu của dãy số (un) là:

u1 = 2;

u2 = u1 + 2 = 2 + 2 = 4;

u3 = u2 + 3 = 4 + 3 = 7;

u4 = u3 + 4 = 7 + 4 = 11;

u5 = u4 + 5 = 11 + 5 = 16.

Ta có: un = un – 1 + n un – un – 1 = n, do n luôn thay đổi nên hiệu hai số hạng liên tiếp của dãy số (un) thay đổi.

Vậy dãy số (un) không phải là cấp số cộng.

d) u1 = 2, un = un – 1 + 3

+) Năm số hạng đầu của dãy số (un) là:

u1 = 2;

u2 = u1 + 3 = 2 + 3 = 5;

u3 = u2 + 3 = 5 + 3 = 8;

u4 = u3 + 3 = 8 + 3 = 11;

u5 = u4 + 3 = 11 + 3 = 14.

Ta có: un = un – 1 + 3 un – un – 1 = 3, với mọi n ≥ 2.

Do đó dãy số (un) là một cấp số cộng với số hạng đầu u1 = 2 và công sai d = 3.

Số hạng tổng quát của cấp số cộng này là un = u1 + (n – 1)d = 2 + (n – 1). 3.

Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết:

Câu 1:

Một nhà hát có 25 hàng ghế với 16 ghế ở hàng thứ nhất, 18 ghế ở hàng thứ hai, 20 ghế ở hàng thứ 3 và cứ tiếp tục theo quy luật đó, tức là hàng sau nhiều hơn hàng liền trước nó 2 ghế. Tính tổng số ghế của nhà hát đó.

Xem lời giải »


Câu 2:

Cho dãy số (u­n) gồm tất cả các số tự nhiên lẻ, xếp theo thứ tự tăng dần.

a) Viết năm số hạng đầu của dãy số.

b) Dự đoán công thức biểu diễn số hạng un theo số hạng un – 1.

Xem lời giải »


Câu 3:

Dãy số không đổi a, a, a, ... có phải là một cấp số cộng không?

Xem lời giải »


Câu 4:

Cho dãy số (un) với un = – 2n + 3. Chứng minh rằng (un) là một cấp số cộng. Xác định số hạng đầu và công sai của cấp số cộng này.

Xem lời giải »


Câu 5:

Một cấp số cộng có số hạng thứ 5 bằng 18 và số hạng thứ 12 bằng 32. Tìm số hạng thứ 50 của cấp số cộng này.

Xem lời giải »


Câu 6:

Một cấp số cộng có số hạng đầu bằng 5 và công sai bằng 2. Hỏi phải lấy tổng của bao nhiêu số hạng đầu của cấp số cộng này để có tổng bằng 2 700?

Xem lời giải »


Câu 7:

Giá của một chiếc xe ô tô lúc mới mua là 680 triệu đồng. Cứ sau mỗi năm sử dụng, giá của chiếc ô tô giảm 55 triệu đồng. Tính giá còn lại của chiếc xe sau 5 năm sử dụng.

Xem lời giải »


Câu 8:

Một kiến trúc sư thiết kế một hội trường với 15 ghế ngồi ở hàng thứ nhất, 18 ghế ngồi ở hàng thứ hai, 21 ghế ngồi ở hàng thứ ba, và cứ như vậy (số ghế ở hàng sau nhiều hơn 3 ghế so với số ghế ở hàng liền kề trước nó). Nếu muốn hội trường đó có sức chứa ít nhất 870 ghế ngồi thì kiến trúc sư đó phải thiết kế tối thiểu bao nhiêu hàng ghế?

Xem lời giải »