Bài 6 trang 43 Toán 12 Tập 1 Cánh diều


Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:

Giải Toán 12 Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số - Cánh diều

Bài 6 trang 43 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:

Bài 6 trang 43 Toán 12 Tập 1 Cánh diều

Lời giải:

a) y =x - 1x + 1

1) Tập xác định: ℝ \ {– 1}.

2) Sự biến thiên

● Giới hạn tại vô cực, giới hạn vô cực và các đường tiệm cận:

limx1- y = + ∞, limx1+y = - ∞. Do đó, đường thẳng x = – 1 là tiệm cận đứng của đồ thị hàm số.

limx+y = 1,limx-y = 1. Do đó, đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số.

y' = 2(x + 1)2 > 0, với mọi x ≠ – 1.

● Bảng biến thiên:

Bài 6 trang 43 Toán 12 Tập 1 Cánh diều

Hàm số đồng biến trên mỗi khoảng (– ∞; – 1) và (– 1; + ∞).

Hàm số không có cực trị.

3) Đồ thị

● Giao điểm của đồ thị với trục tung: (0; – 1).

● Giao điểm của đồ thị với trục hoành: (1; 0).

● Đồ thị hàm số đi qua các điểm (0; – 1), (1; 0), (– 2; 3) và (– 3; 2).

● Đồ thị hàm số nhận giao điểm I(– 1; 1) của hai đường tiệm cận của đồ thị làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận đó làm trục đối xứng.

Bài 6 trang 43 Toán 12 Tập 1 Cánh diều

Vậy đồ thị hàm số y =x - 1x + 1 được cho ở hình trên.

b) y =-2xx + 1

1) Tập xác định: ℝ \ {– 1}.

2) Sự biến thiên

● Giới hạn tại vô cực, giới hạn vô cực và các đường tiệm cận:

limx1- y = - ∞, limx1+y = + ∞. Do đó, đường thẳng x = – 1 là tiệm cận đứng của đồ thị hàm số.

limx+y = - 2,limx-y = - 2. Do đó, đường thẳng y = – 2 là tiệm cận ngang của đồ thị hàm số.

y' = -2(x + 1 )2 < 0, với mọi x ≠ – 1 .

● Bảng biến thiên:

Bài 6 trang 43 Toán 12 Tập 1 Cánh diều

Hàm số nghịch biến trên mỗi khoảng (– ∞; – 1) và (– 1; + ∞).

Hàm số không có cực trị.

3) Đồ thị

● Đồ thị hàm số đi qua gốc tọa độ O(0; 0).

● Đồ thị hàm số đi qua các điểm (– 3; – 3), (– 2; – 4), (0; 0) và (1; – 1).

● Đồ thị hàm số nhận giao điểm I(– 1; – 2) của hai đường tiệm cận của đồ thị làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận đó làm trục đối xứng.

Bài 6 trang 43 Toán 12 Tập 1 Cánh diều

Vậy đồ thị hàm số y =-2xx + 1 được cho ở hình trên.

c) y =x2 - 3x + 6x - 1

1) Tập xác định: ℝ \ {1}.

2) Sự biến thiên

● Giới hạn tại vô cực, giới hạn vô cực và các đường tiệm cận:

Ta viết hàm số đã cho dưới dạng: y = x - 2 + 4x - 1.

limx+y = + ∞,limx-y = - ∞.

limx1- y = - ∞, limx1+y = + ∞. Do đó, đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.

limx+[y - (x - 2)] = limx+4x - 1= 0, limx-[y - (x - 2)]= limx-4x - 1 = 0. Do đó, đường thẳng y = x – 2 là tiệm cận xiên của đồ thị hàm số.

y' = x2 - 2x - 3(x - 1)2;

y' = 0 ⇔ x2 – 2x – 3 = 0 ⇔ x = – 1 hoặc x = 3.   

● Bảng biến thiên:

Bài 6 trang 43 Toán 12 Tập 1 Cánh diều

Hàm số đồng biến trên mỗi khoảng (– ∞; – 1) và (3; + ∞); nghịch biến trên mỗi khoảng (– 1; 1) và (1; 3).

Hàm số đạt cực đại tại x = – 1, y = – 5; đạt cực tiểu tại x = 3, yCT = 3.

3) Đồ thị

● Giao điểm của đồ thị với trục tung: (0; – 6).

● Đồ thị hàm số không cắt trục hoành.

● Đồ thị hàm số đi qua các điểm (– 3; – 6), (– 1; – 5), (0; – 6), (2; 4), (3; 3) và (5; 4).

● Đồ thị hàm số nhận giao điểm I(1; – 1) của hai đường tiệm cận của đồ thị làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận đó làm trục đối xứng.

Bài 6 trang 43 Toán 12 Tập 1 Cánh diều

Vậy đồ thị hàm số y =x2 - 3x + 6x - 1 được cho ở hình trên.

d) y = -x2 + 2x -4x - 2

1) Tập xác định: ℝ \ {2}.

2) Sự biến thiên

● Giới hạn tại vô cực, giới hạn vô cực và các đường tiệm cận:

Ta viết hàm số đã cho dưới dạng: y = -x - 4x - 2.

limx+y = - ∞,limx-y = + ∞.

limx2- y = + ∞, limx2+y = - ∞. Do đó, đường thẳng x = 2 là tiệm cận đứng của đồ thị hàm số.

limx+[y - (-x)] = limx+-4x - 2= 0, limx-[y - (-x)] = limx--4x - 2= 0. Do đó, đường thẳng y = – x là tiệm cận xiên của đồ thị hàm số.

y' = -x2 + 4x(x - 2)2;

y' = 0 ⇔ – x2 + 4x = 0 ⇔ x = 0 hoặc x = 4.  

● Bảng biến thiên:

Bài 6 trang 43 Toán 12 Tập 1 Cánh diều

Hàm số đã cho đồng biến trên mỗi khoảng (0; 2) và (2; 4); nghịch biến trên mỗi khoảng (– ∞; 0) và (4; + ∞).

Hàm số đạt cực đại tại x = 4, y = – 6; đạt cực tiểu tại x = 0, yCT = 2.

3) Đồ thị

● Giao điểm của đồ thị với trục tung: (0; 2).

● Đồ thị hàm số không cắt trục hoành.

● Đồ thị hàm số đi qua các điểm (– 2; 3), (0; 2), (1; 3), (3; – 7), (4; – 6) và (6; – 7).

● Đồ thị hàm số nhận giao điểm I(2; – 2) của hai đường tiệm cận của đồ thị làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận đó làm trục đối xứng.

Bài 6 trang 43 Toán 12 Tập 1 Cánh diều

Vậy đồ thị hàm số y = -x2 + 2x -4x - 2 được cho ở hình trên.

e) y = 2x2 + 3x -5x + 2

1) Tập xác định: ℝ \ {– 2}.

2) Sự biến thiên

● Giới hạn tại vô cực, giới hạn vô cực và các đường tiệm cận:

Ta viết hàm số đã cho dưới dạng: y = 2x - 1 - 3x + 2.

limx+y = + ∞,limx-y = - ∞.

limx2- y = + ∞, limx2+y = - ∞. Do đó, đường thẳng x = – 2 là tiệm cận đứng của đồ thị hàm số.

limx+[y - (2x - 1)] = limx+-3x + 2= 0, limx-[y - (2x - 1)] = limx--3x + 2= 0. Do đó, đường thẳng y = 2x – 1 là tiệm cận xiên của đồ thị hàm số.

y' =2x2 +8x + 11(x + 2)2= 2(x + 2)2+3(x + 2)2= 2 + 3(x + 2)2 > 0 với mọi x ≠ – 2;

● Bảng biến thiên:

Bài 6 trang 43 Toán 12 Tập 1 Cánh diều

Hàm số đồng biến trên mỗi khoảng (– ∞; – 2) và (– 2; + ∞).

Hàm số không có cực trị.

3) Đồ thị

● Giao điểm của đồ thị với trục tung: 0 ; -52.

● Giao điểm của đồ thị với trục hoành:

Giải phương trình  2x2 + 3x -5x + 2 = 0 ta được x = 1 và x = -52.

Vậy đồ thị hàm số cắt trục hoành tại hai điểm (1; 0) và -52; 0.

● Đồ thị hàm số đi qua các điểm (– 3; – 4), -52; 0, (– 1; – 6), 0 ; -52 và (1; 0).

● Đồ thị hàm số nhận giao điểm I(– 2; – 5) của hai đường tiệm cận của đồ thị làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận đó làm trục đối xứng.

Bài 6 trang 43 Toán 12 Tập 1 Cánh diều

Vậy đồ thị hàm số y = 2x2 + 3x -5x + 2 được cho ở hình trên.

g) y = x2 - 2x -3-x + 2

1) Tập xác định: ℝ \ {2}.

2) Sự biến thiên

● Giới hạn tại vô cực, giới hạn vô cực và các đường tiệm cận:

Ta viết hàm số đã cho dưới dạng: y = -x + 3x - 2.

limx+y = - ∞,limx-y = + ∞.

limx2- y = - ∞, limx2+y = + ∞. Do đó, đường thẳng x = 2 là tiệm cận đứng của đồ thị hàm số.

limx+[y - (-x)] = limx+3x - 2= 0, limx-[y - (-x)] = limx-3x - 2= 0. Do đó, đường thẳng y = – x là tiệm cận xiên của đồ thị hàm số.

y' = -x2 + 4x - 7(-x + 2)2=-(x - 2)2 - 3(-x + 2)2 < 0 với mọi x ≠ 2.

● Bảng biến thiên:

Bài 6 trang 43 Toán 12 Tập 1 Cánh diều

Hàm số đã cho nghịch biến trên mỗi khoảng (– ∞; 2) và (2; + ∞).

Hàm số không có cực trị.

3) Đồ thị

● Giao điểm của đồ thị với trục tung: 0; -32.

● Giao điểm của đồ thị với trục hoành:

Giải phương trình x2 - 2x - 3-x + 2= 0 ta được x = – 1 và x = 3.

Vậy đồ thị hàm số cắt trục hoành tại hai điểm (– 1; 0) và (3; 0).

● Đồ thị hàm số đi qua các điểm (– 1; 0), 0; -32, (1; – 4), (3; 0) và (5; – 4).

● Đồ thị hàm số nhận giao điểm I(2; – 2) của hai đường tiệm cận của đồ thị làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận đó làm trục đối xứng.

Bài 6 trang 43 Toán 12 Tập 1 Cánh diều

Vậy đồ thị hàm số y = x2 - 2x -3-x + 2 được cho ở hình trên.

Lời giải bài tập Toán 12 Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác: