Bài 13 trang 67 Toán 12 Tập 2 Chân trời sáng tạo
Cho bốn điểm A(−2; 6; 3), B(1; 0; 6), C(0; 2; −1), D(1; 4; 0).
Giải Toán 12 Bài tập cuối chương 5 - Chân trời sáng tạo
Bài 13 trang 67 Toán 12 Tập 2: Cho bốn điểm A(−2; 6; 3), B(1; 0; 6), C(0; 2; −1), D(1; 4; 0).
a) Viết phương trình mặt phẳng (BCD). Suy ra ABCD là một tứ diện.
b) Tính chiều cao AH của tứ diện ABCD.
c) Viết phương trình mặt phẳng (α) chứa AB và song song với CD.
Lời giải:
a) Ta có ,
Mặt phẳng (BCD) đi qua B(1; 0; 6) và nhận có phương trình là 8(x – 1) – 3y – 2(z – 6) = 0 ⇔ 8x – 3y – 2z + 4 = 0.
Thay tọa độ điểm A vào phương trình mặt phẳng (BCD) ta được:
8.(−2) – 3.6 – 2.3 + 4 = −36 ≠ 0.
Do đó A ∉ (BCD). Suy ra ABCD là một tứ diện.
b) Ta có .
c) Ta có và , .
Mặt phẳng (α) đi qua A(−2; 6; 3) và nhận có phương trình là (x + 2) – (z – 3) = 0 ⇔ x – z + 5 = 0.
Lời giải bài tập Toán 12 Bài tập cuối chương 5 hay, chi tiết khác: