Hoạt động khởi động trang 75 Toán 12 Tập 2 Chân trời sáng tạo
Một loại xét nghiệm nhanh SARS–CoV–2 cho kết quả dương tính với 76,2% các ca thực sự nhiễm virus và kết quả âm tích với 99,1% các ca thực sự không nhiễm virus (nguồn: https://tapchiyhocvietnam.vn/index.php/vmj/article/view/2124/1921). Giả sử tỉ lệ người nhiễm virus SARS–CoV–2 trong một cộng đồng là 1%. Một người trong cộng đồng đó làm xét nghiệm và nhận kết quả dương tính. Hỏi khả năng người đó thực sự nhiễm virus là cao hay thấp?
Giải Toán 12 Bài 2: Công thức xác suất toàn phần và công thức Bayes - Chân trời sáng tạo
Hoạt động khởi động trang 75 Toán 12 Tập 2: Một loại xét nghiệm nhanh SARS–CoV–2 cho kết quả dương tính với 76,2% các ca thực sự nhiễm virus và kết quả âm tích với 99,1% các ca thực sự không nhiễm virus (nguồn: https://tapchiyhocvietnam.vn/index.php/vmj/article/view/2124/1921). Giả sử tỉ lệ người nhiễm virus SARS–CoV–2 trong một cộng đồng là 1%. Một người trong cộng đồng đó làm xét nghiệm và nhận kết quả dương tính. Hỏi khả năng người đó thực sự nhiễm virus là cao hay thấp?
Lời giải:
Sau khi học xong bài này, ta giải quyết bài toán này như sau:
Gọi A là biến cố “Người làm xét nghiệm có kết quả dương tính” và B là biến cố “Người làm xét nghiệm thực sự nhiễm vi rút”.
Ta có P(A|B) = 0,762; ; P(B) = 0,01.
Suy ra ,
Theo công thức xác suất toàn phần ta có:
= 0,01.0,762 + 0,99.0,009 = 0,01653.
Xác suất một người thực sự nhiễm virus khi người đó có kết quả xét nghiệm dương tính là P(B|A).
Ta có
Vậy khả năng thực sự người đó nhiễn virus là 46,1%.
Lời giải bài tập Toán 12 Bài 2: Công thức xác suất toàn phần và công thức Bayes hay, chi tiết khác: