Giải Toán 12 trang 27 Tập 2 Chân trời sáng tạo
Haylamdo biên soạn và sưu tầm lời giải bài tập Toán 12 trang 27 Tập 2 trong Bài 3: Ứng dụng hình học của tích phân Toán 12 Tập 2 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 27.
Giải Toán 12 trang 27 Tập 2 Chân trời sáng tạo
Vận dụng 2 trang 27 Toán 12 Tập 2: Sử dụng tích phân, tính thể tích khối nón có bán kính đáy r và chiều cao h (Hình 16).
Lời giải:
Chọn hệ trục tọa độ như hình vẽ. Ta có O(0; 0), B(h; r).
Ta có OB là đường thẳng đi qua gốc tọa độ nên OB: y = ax.
Mà OB đi qua điểm B nên r = ah .
Do đó OB: .
Khi quay hình phẳng giới hạn bởi đồ thị hàm số , trục hoành, trục tung và đường thẳng x = h quanh trục Ox ta được khối nón có chiều cao h và bán kính r.
Do đó thể tích của khối nón là:
Bài 1 trang 27 Toán 12 Tập 2: Tính diện tích hình phẳng giới hạn bởi
a) Đồ thị của hàm số y = ex, trục hoành và hai đường thẳng x = −1, x = 1.
b) Đồ thị của hàm số , trục hoành và hai đường thẳng x = 1, x = 2.
Lời giải:
a) Diện tích cần tính là:
.
b) Diện tích cần tính là:
Bài 2 trang 27 Toán 12 Tập 2: Tính diện tích hình phẳng giới hạn bởi đồ thị của hàm số y = x3 – x, trục hoành và hai đường thẳng x = 0, x = 2.
Lời giải:
Ta có x3 – x = 0 ⇔ x = 0 hoặc x = 1 hoặc x = −1.
Với x [0; 1] thì x3 – x ≤ 0; x [1; 2] thì x3 – x ≥ 0.
Diện tích cần tính là:
Bài 3 trang 27 Toán 12 Tập 2: Tính diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số , y = – x và hai đường thẳng x = 1, x = 4.
Lời giải:
Diện tích cần tính là:
= 16 + ln4 – 1 = 15 + ln4.
Bài 4 trang 27 Toán 12 Tập 2: Tính diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số y = x3 + 1, y = 2 và hai đường thẳng x = −1, x = 2.
Lời giải:
Diện tích cần tính là:
.
Ta có x3 – 1 = 0 ⇔ x = 1.
Với x [−1; 1] thì x3 – 1 ≤ 0, x [1; 2] thì x3 – 1 ≥ 0.
Do đó
Bài 5 trang 27 Toán 12 Tập 2: Khi cắt một vật thể hình chiếc nêm bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x (−2 ≤ x ≤ 2), mặt cắt là tam giác vuông có một góc 45° và độ dài một cạnh góc vuông là (dm) (Hình 17). Tính thể tích của vật thể.
Lời giải:
Vì mặt cắt là tam giác vuông có một góc 45° nên mặt cắt là tam giác vuông cân.
Do đó diện tích của mặt cắt là
Thể tích vật thể là:
Bài 6 trang 27 Toán 12 Tập 2: Cho D là hình phẳng giới hạn bởi đồ thị hàm số (x ≤ 4), trục tung và trục hoành (Hình 18). Tính thể tích khối tròn xoay tạo thành khi quay D quanh trục Ox.
Lời giải:
Thể tích cần tính là:
= 8π.
Bài 7 trang 27 Toán 12 Tập 2: Trong mặt phẳng tọa độ Oxy, cho hình thang OABC có A(0; 1), B(2; 2) và C(2; 0) (Hình 19). Tính thể tích khối tròn xoay tạo thành khi quay hình thang OABC quanh trục Ox.
Lời giải:
Ta có OABC là hình thang vuông, có đường cao OC nằm trên trục Ox.
Khi quay hình thang OABC quanh trục Ox ta được khối tròn xoay là khối nón cụt, có bán kính đáy bé r1 = OA = 1, bán kính đáy lớn r2 = BC = 2 và chiều cao h = OC = 2.
Thể tích cần tính là:
Bài 8 trang 27 Toán 12 Tập 2: Sử dụng tích phân, tính thể tích của hình chóp tứ giác đều có cạnh đáy bằng a và chiều cao bằng h (Hình 20).
Lời giải:
Chọn trục Ox trùng với đường cao của hình chóp đều như hình vẽ, sao cho mặt đáy nằm trong mặt phẳng vuông góc với trục Ox tại x = 0.
Mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x (0 ≤ x ≤ h) cắt hình chóp đều theo mặt cắt là hình vuông đồng dạng với đáy của hình chóp theo tỉ số .
Do đó .
Do đó thể tích khối chóp tứ giác đều là:
Lời giải bài tập Toán 12 Bài 3: Ứng dụng hình học của tích phân hay khác: