Vận dụng trang 73 Toán 12 Tập 1 Chân trời sáng tạo
Giả sử kết quả khảo sát hai khu vực A và B về độ tuổi kết hôn của một số phụ nữ vừa lập gia đình được cho ở bảng sau:
Giải Toán 12 Bài 1: Khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm - Chân trời sáng tạo
Vận dụng trang 73 Toán 12 Tập 1: Giả sử kết quả khảo sát hai khu vực A và B về độ tuổi kết hôn của một số phụ nữ vừa lập gia đình được cho ở bảng sau:
Tuổi kết hôn |
[19; 22) |
[22; 25) |
[25; 28) |
[28; 31) |
[31; 34) |
Số phụ nữ khu vực A |
10 |
27 |
31 |
25 |
7 |
Số phụ nữ khu vực B |
47 |
40 |
11 |
2 |
0 |
a) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của từng mẫu số liệu ghép nhóm ứng với mỗi khu vực A và B.
b) Nếu so sánh theo khoảng tứ phân vị thì phụ nữ ở khu vực nào có độ tuổi kết hôn đồng đều hơn?
Lời giải:
a)
• Khu vực A:
Khoảng biến thiên của mẫu số liệu ghép nhóm ứng với khu vực A là:
R = 34 – 19 = 15.
Cỡ mẫu n = 10 + 27 + 31 + 25 + 7 = 100.
Gọi x1; x2; …; x100 là mẫu số liệu gốc về độ tuổi kết hôn của một số phụ nữ vừa lập gia đình ở khu vực A được xếp theo thứ tự không giảm.
Ta có x1; x2; …; x10 ∈ [19; 22), x11; x12; …; x37 ∈ [22; 25),
x38; x39; …; x68 ∈ [25; 28), x69; …; x93 ∈ [28; 31), x94; …; x100 ∈ [31; 34).
Tứ phân vị thứ nhất của mẫu số liệu gốc là (x25 + x26) ∈ [22; 25). Do đó, tứ phân thứ nhất của mẫu số liệu ghép nhóm là:
.
Tứ phân vị thứ ba của mẫu số liệu gốc là (x75 + x76) ∈ [28; 31). Do đó, tứ phân thứ ba của mẫu số liệu ghép nhóm là:
.
Khoảng tứ phân vị của mẫu số liệu ghép nhóm về độ tuổi kết hôn của một số phụ nữ vừa lập gia đình ở khu vực A là:
∆Q = Q3 – Q1 = ≈ 5,17.
• Khu vực B:
Khoảng biến thiên của mẫu số liệu ghép nhóm ứng với khu vực B là:
R' = 31 – 19 = 12.
Cỡ mẫu n' = 47 + 40 + 11 + 2 = 100.
Gọi y1; y2; …; y100 là mẫu số liệu gốc về độ tuổi kết hôn của một số phụ nữ vừa lập gia đình ở khu vực B được xếp theo thứ tự không giảm.
Ta có y1; y2; …; y47 ∈ [19; 22), y48; y49; …; y87 ∈ [22; 25),
y88; y89; …; y98 ∈ [25; 28), y99; y100 ∈ [28; 31).
Tứ phân vị thứ nhất của mẫu số liệu gốc là (y25 + y26) ∈ [19; 22). Do đó, tứ phân thứ nhất của mẫu số liệu ghép nhóm là:
.
Tứ phân vị thứ ba của mẫu số liệu gốc là (y75 + y76) ∈ [22; 25). Do đó, tứ phân thứ ba của mẫu số liệu ghép nhóm là:
.
Khoảng tứ phân vị của mẫu số liệu ghép nhóm về độ tuổi kết hôn của một số phụ nữ vừa lập gia đình ở khu vực B là:
∆'Q = Q'3 – Q'1 = ≈ 3,5.
Vì ∆'Q < ∆Q nên phụ nữ ở khu vực B có độ tuổi kết hôn đồng đều hơn.
Lời giải bài tập Toán 12 Bài 1: Khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm hay, chi tiết khác: