Bài 1.27 trang 41 Toán 12 Tập 1 - Kết nối tri thức


Giả sử chi phí (tính bằng trăm nghìn đồng) để sản xuất x đơn vị hàng hóa nào đó là: C(x) = 23000 + 50x – 0,5x + 0,00175x.

Giải Toán 12 Bài 5: Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn - Kết nối tri thức

Bài 1.27 trang 41 Toán 12 Tập 1: Giả sử chi phí (tính bằng trăm nghìn đồng) để sản xuất x đơn vị hàng hóa nào đó là: C(x) = 23000 + 50x – 0,5x2 + 0,00175x3.

a) Tìm hàm chi phí biên.

b) Tìm C'(100) và giải thích ý nghĩa của nó.

c) So sánh C'(100) với chi phí sản xuất đơn vị hàng hóa thứ 101.

Lời giải:

a) Hàm chi phí biên là C'(x) = 214000x2x+50

b) C'100=214000.1002100+50=2,5 (trăm nghìn đồng).

Chi phí biên tại x = 100 là 250 000 đồng, nghĩa là chi phí để sản xuất thêm 1 đơn vị hàng hóa tiếp theo (đơn vị hàng hóa thứ 101) là khoảng 250 000 đồng.

c) Chi phí sản xuất đơn vị hàng hóa thứ 101 là

C(101) – C(100) = 24752,52675 – 24750 = 2,52675 (trăm nghìn đồng).

Giá trị này xấp xỉ với chi phí biên C'(100) đã tính ở câu b.

Lời giải bài tập Toán 12 Bài 5: Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác: