Luyện tập 8 trang 35 Toán 12 Tập 2 - Kết nối tri thức


(H.5.8) Trong không gian Oxyz, cho mặt phẳng (α) không đi qua gốc tọa độ và cắt ba trục Ox, Oy, Oz tương ứng tại các điểm A(a; 0; 0), B(0; b; 0), C(0; 0; c) (a, b, c ≠ 0).

Giải Toán 12 Bài 14: Phương trình mặt phẳng - Kết nối tri thức

Luyện tập 8 trang 35 Toán 12 Tập 2: (H.5.8) Trong không gian Oxyz, cho mặt phẳng (α) không đi qua gốc tọa độ và cắt ba trục Ox, Oy, Oz tương ứng tại các điểm A(a; 0; 0), B(0; b; 0), C(0; 0; c) (a, b, c ≠ 0).

Chứng minh rằng mặt phẳng (α) có phương trình: xa+yb+zc=1

Luyện tập 8 trang 35 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Lời giải:

Mặt phẳng (α) nhận AB=a;b;0AC=a;0;c làm một cặp vectơ chỉ phương. Do đó mặt phẳng (α) nhận n=AB,AC=b00c;0aca;aba0=bc;ca;ba làm một vectơ pháp tuyến.

Khi đó phương trình mặt phẳng (α) đi qua điểm A(a; 0; 0) và nhận n=bc;ca;ba làm vectơ pháp tuyến có dạng: bc(x – a) + cay + baz = 0 ⇔ bcx + cay + baz = abcbcxabc+cayabc+bazabc=1xa+yb+zc=1

Lời giải bài tập Toán 12 Bài 14: Phương trình mặt phẳng hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác: