X

Giải Toán lớp 7 Cánh diều

Bài 3 trang 86 Toán 7 Tập 2 Cánh diều


Giải Toán 7 Bài 5: Trường hợp bằng nhau thứ hai của tam giác: cạnh - góc - cạnh - Cánh diều

Bài 3 trang 86 Toán lớp 7 Tập 2: Có hai xã cùng ở một bên bờ sông Lam. Các kĩ sư muốn bắc một cây cầu qua sông Lam cho người dân hai xã. Để thuận lợi cho người dân đi lại, các kĩ sư cần phải chọn vị trí của cây cầu sao cho tổng khoảng cách từ hai xã đến chân cầu là nhỏ nhất. Bạn Nam đề xuất cách xác định vị trí của cây cầu như sau (Hình 54):

Bài 3 trang 86 Toán 7 Tập 2 Cánh diều

– Kí hiệu điểm A chỉ vị trí xã thứ nhất, điểm B chỉ vị trí xã thứ hai, đường thẳng d chỉ vị trí bờ sông Lam.

– Kẻ AH vuông góc với d (H thuộc d), kéo dài AH về phía H và lấy điểm C sao cho AH = HC.

– Nối C với B, CB cắt đường thẳng d tại điểm E.

Khi đó, E là vị trí của cây cầu.

Bạn Nam nói rằng: Lấy một điểm M trên đường thẳng d, M khác E thì

MA + MB > EA + EB.

Em hãy cho biết bạn Nam nói đúng hay sai. Vì sao?

Lời giải:

Nối CM.

Bài 3 trang 86 Toán 7 Tập 2 Cánh diều

Xét ∆AHE vuông tại H và ∆CHE vuông tại H có:

AH = CH (giả thiết).

HE chung.

Suy ra ∆AHE = ∆CHE (2 cạnh góc vuông).

Do đó EA = EC (2 cạnh tương ứng).

Khi đó EA + EB = EC + EB = BC.

Xét ∆AHM vuông tại H và ∆CHM vuông tại H có:

AH = CH (giả thiết).

HM chung.

Suy ra ∆AHM = ∆CHM (2 cạnh góc vuông).

Do đó MA = MC (2 cạnh tương ứng).

Khi đó MA + MB = MC + MB.

Xét ∆MBC có MB + MC > BC (bất đẳng thức tam giác).

Hay MC + MB > EC + EB hay MA + MB > EA + EB.

Vậy bạn Nam nói đúng.

Lời giải bài tập Toán 7 Bài 5: Trường hợp bằng nhau thứ hai của tam giác: cạnh - góc - cạnh hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 7 Cánh diều hay, chi tiết khác: