X

Giải Toán lớp 7 Kết nối tri thức

Bài 4.19 trang 74 Toán 7 Tập 1 - Kết nối tri thức


Cho tia Oz là tia phân giác của góc xOy. Lấy các điểm A, B, C lần lượt thuộc các tia Ox, Oy, Oz sao cho 

Giải Toán lớp 7 Luyện tập chung trang 74

Bài 4.19 trang 74 Toán 7 Tập 1: Cho tia Oz là tia phân giác của góc xOy. Lấy các điểm A, B, C lần lượt thuộc các tia Ox, Oy, Oz sao cho CAO^=CBO^.

a) Chứng minh rằng ΔOAC=ΔOBC.

b) Lấy điểm M trên tia đối của tia CO. Chứng minh rằng ΔMAC=ΔMBC.

Lời giải:

a)

Bài 4.19 trang 74 Toán 7 Tập 1 | Kết nối tri thức Giải Toán lớp 7

Do Oz là tia phân giác của góc xOy nên AOC^=BOC^.

Xét tam giác OAC có AOC^+CAO^+ACO^=180°.

Do đó ACO^=180°AOC^CAO^ (1).

Xét tam giác OBC có BOC^+CBO^+BCO^=180°.

Do đó BCO^=180°BOC^CBO^ (2).

AOC^=BOC^ và CAO^=CBO^ nên từ (1) và (2) ta có ACO^=BCO^.

Xét hai tam giác OAC và OBC có:

AOC^=BOC^ (chứng minh trên).

OC chung.

ACO^=BCO^ (chứng minh trên).

Vậy ΔOAC=ΔOBC (g – c – g).

b)

Bài 4.19 trang 74 Toán 7 Tập 1 | Kết nối tri thức Giải Toán lớp 7

Ta có ACM^ là góc ngoài tại đỉnh C của tam giác OAC nên ACM^=AOC^+CAO^.

BCM^ là góc ngoài tại đỉnh C của tam giác OBC nên BCM^=BOC^+CBO^.

AOC^=BOC^ và CAO^=CBO^ nên ACM^=BCM^.

Do ΔOAC=ΔOBC nên AC = BC (2 cạnh tương ứng).

Xét hai tam giác MAC và MBC có:

AC = BC (chứng minh trên).

ACM^=BCM^ (chứng minh trên).

MC chung.

Vậy ΔMAC=ΔMBC (c – g – c).

Lời giải bài tập Toán lớp 7 Luyện tập chung trang 74 Kết nối tri thức hay khác:

Xem thêm lời giải bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác: