Bài 4.38 trang 87 Toán 7 Tập 1 - Kết nối tri thức
Cho tam giác ABC cân tại A có Trên cạnh BC lấy hai điểm M, N sao cho MA, NA lần lượt vuông góc với AB, AC.
Giải Toán 7 Bài tập cuối chương 4
Bài 4.38 trang 87 Toán 7 Tập 1: Cho tam giác ABC cân tại A có Trên cạnh BC lấy hai điểm M, N sao cho MA, NA lần lượt vuông góc với AB, AC.
Chứng minh rằng:
a)
b) Các tam giác ANB, AMC lần lượt cân tại N, M.
Lời giải:
a) Do nên tam giác BAM vuông tại A, tam giác CAN vuông tại A.
Do tam giác ABC cân tại A nên AB = AC, hay
Xét hai tam giác BAM vuông tại A và CAN vuông tại A có:
(chứng minh trên).
AB = AC (chứng minh trên).
Vậy (góc nhọn – cạnh góc vuông).
b) Xét tam giác ABC có:
Mà (do tam giác ABC cân tại A).
Do đó
Do đó
Do (chứng minh ở ý a) nên AM = AN (2 cạnh tương ứng).
Do đó tam giác AMN cân tại A (1).
Xét tam giác CAN vuông tại A có (trong tam giác vuông, hai góc nhọn phụ nhau).
Do đó
Từ (1) và (2) suy ra tam giác AMN đều.
Do đó
Ta có:
Suy ra
Do đó
Suy ra tam giác ANB cân tại N.
Ta có:
Suy ra
Do đó
Suy ra tam giác AMC cân tại M.
Lời giải bài tập Toán lớp 7 Bài tập cuối chương 4 Kết nối tri thức hay khác:
Bài 4.33 trang 87 Toán 7 Tập 1: Tính các số đo x, y trong các tam giác dưới đây (H.4.75). ....
Bài 4.34 trang 87 Toán 7 Tập 1: Trong Hình 4.76, có AM = BM, AN = BN. Chứng minh rằng ....
Bài 4.35 trang 87 Toán 7 Tập 1: Trong Hình 4.77, có AO = BO, Chứng minh rằng AM = BN. ....
Bài 4.36 trang 87 Toán 7 Tập 1: Trong Hình 4.78, ta có AN = BM, Chứng minh rằng ....