X

Giải Toán lớp 7 Kết nối tri thức

Chứng minh rằng tam giác có đường trung tuyến và đường cao xuất phát từ cùng


Câu hỏi:

Chứng minh rằng tam giác có đường trung tuyến và đường cao xuất phát từ cùng một đỉnh trùng nhau là một tam giác cân.

Trả lời:

Chứng minh rằng tam giác có đường trung tuyến và đường cao xuất phát từ cùng  (ảnh 1)

Giả sử tam giác ABC có AM vừa là đường trung tuyến, vừa là đường cao xuất phát từ đỉnh A.

Do AM là đường trung tuyến của tam giác ABC nên M là trung điểm của BC.

Do đó BM = CM.

Xét ΔABM vuông tại M và ΔACM vuông tại M có:

AM chung.

BM = CM (chứng minh trên).

Suy ra ΔABM=ΔACM (2 cạnh góc vuông).

Do đó AB = AC (2 cạnh tương ứng).

Tam giác ABC có AB = AC nên tam giác ABC cân tại A.

Xem thêm lời giải bài tập Toán 7 Kết nối tri thức hay, chi tiết:

Câu 1:

Cho ba điểm phân biệt thẳng hàng A, B, C. Gọi d là đường thẳng vuông góc với đường thẳng AB tại A. Với điểm M thuộc d, M khác A, vẽ đường thẳng CM. Qua B kẻ đường thẳng vuông góc với đường thẳng CM, cắt d tại N. Chứng minh đường thẳng BM vuông góc với đường thẳng CN.

Xem lời giải »


Câu 2:

Có một mảnh tôn hình tròn cần đục một lỗ ở tâm. Làm thế nào để xác định được tâm của mảnh tôn đó?

Xem lời giải »


Câu 3:

Cho tam giác ABC. Kẻ tia phân giác At của góc tạo bởi tia AB và tia đối của tia AC. Chứng minh rằng nếu đường thẳng chứa tia At song song với đường thẳng BC thì tam giác ABC cân tại A.

Xem lời giải »


Câu 4:

Kí hiệu SABC là diện tích tam giác ABC. Gọi G là trọng tâm của tam giác ABC, M là trung điểm của BC.

a) Chứng minh SGBC = 13SABC.

Gợi ý. Sử dụng GM = 13AM để chứng minh SGBM = 13SABM, SGCM = 13SACM.

Xem lời giải »