Bài 9.41 trang 92 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9
Cho tam giác ABC nội tiếp đường tròn (O). Gọi M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB. Chứng minh rằng các tứ giác ANOP, BPOM, CMON là các tứ giác nội tiếp.
Giải Toán 9 Bài tập cuối chương 9 - Kết nối tri thức
Bài 9.41 trang 92 Toán 9 Tập 2: Cho tam giác ABC nội tiếp đường tròn (O). Gọi M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB. Chứng minh rằng các tứ giác ANOP, BPOM, CMON là các tứ giác nội tiếp.
Lời giải:
Vì tam giác ABC nội tiếp đường tròn (O).
Mà M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB nên OM, ON, OP là ba đường trung trực của tam giác ABC.
Do đó OM ⊥ BC, ON ⊥ CA, OP ⊥ AB.
Vì ∆OAN vuông tại N nên tam giác nội tiếp đường tròn có đường kính OA. Do đó O, A, N nằm trên đường tròn đường kính OA.
Vì ∆OAP vuông tại P nên tam giác nội tiếp đường tròn đường kính OA. Do đó O, A, P nằm trên đường tròn đường kính OA.
Suy ra bốn điểm A, N, O, P nằm trên đường tròn đường kính OA.
Vì vậy, tứ giác ANOP nội tiếp đường tròn đường kính OA.
Chứng minh tương tự, ta có BPOM nội tiếp đường tròn đường kính OB, CMON nội tiếp đường tròn đường kính OC.
Vậy ANOP, BPOM, CMON là các tứ giác nội tiếp.
Lời giải bài tập Toán 9 Bài tập cuối chương 9 hay, chi tiết khác:
Bài 9.37 trang 92 Toán 9 Tập 2: Khẳng định nào sau đây là đúng? ....
Bài 9.39 trang 92 Toán 9 Tập 2: Đa giác nào dưới đây không nội tiếp một đường tròn? ....
Bài 9.40 trang 92 Toán 9 Tập 2: Cho tam giác ABC có các đường cao BE, CF cắt nhau tại H ....
Bài 9.43 trang 92 Toán 9 Tập 2: a) Phép quay thuận chiều 45° tâm O biến các điểm A, B, C, D ....
Bài 9.44 trang 92 Toán 9 Tập 2: Bạn Lan muốn cắt hình ngôi sao có dạng như Hình 9.62 ....