Hình vẽ bên dưới có tam giác MAB cân tại M, tam giác NAB cân tại N
Hình vẽ bên dưới có tam giác MAB cân tại M, tam giác NAB cân tại N. Chứng minh MN là đường trung trực của AB.
Giải vở thực hành Toán 7 Bài 5: Đường trung trực của một đoạn thẳng
Bài 5 trang 49 Vở thực hành Toán 7 Tập 2: Hình vẽ bên dưới có tam giác MAB cân tại M, tam giác NAB cân tại N. Chứng minh MN là đường trung trực của AB.
Lời giải:
Xét tam giác MNA và tam giác MNB.
MA = MB ( do tam giác MAB cân tại M).
NA = NB ( do tam giác NAB cân tại N).
Cạnh chung MN.
Vậy tam giác MNA bằng tam giác MNB theo trường hợp c.c.c.
Suy ra .
Xét tam giác MAH và tam giac MBH.
(do ).
MA = MB ( do tam giác MAB cân tại M).
Cạnh chung MH.
Vậy tam giác MAH bằng tam giác MBH theo trường hợp c.g.c.
Suy ra HA = HB (1) và mà nên hay MH vuông góc với AB hay MN vuông góc với AB (2).
Từ (1) và (2) suy ra MN là đường trung trực của AB.