Cho hai đoạn thẳng AC và BD cắt nhau tại điểm O sao cho OA = OC, OB = OD như hình bên
Cho hai đoạn thẳng AC và BD cắt nhau tại điểm O sao cho OA = OC, OB = OD như hình bên.
Giải Vở thực hành Toán 7 Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác
Bài 2 (4.13) trang 64 vở thực hành Toán lớp 7 Tập 1: Cho hai đoạn thẳng AC và BD cắt nhau tại điểm O sao cho OA = OC, OB = OD như hình bên.
a) Hãy tìm hai cặp tam giác có chung đỉnh O bằng nhau.
b) Chứng minh rằng
Lời giải:
a) Theo hình vẽ bên ta có: ∆AOD = ∆COB (c – g – c), vì:
OA = OC (theo giả thiết), (2 góc đối đỉnh), OD = OB (theo giả thiết).
∆AOB = ∆COD (c – g – c), vì:
OA = OC (theo giả thiết), (2 góc đối đỉnh), OB = OD (theo giả thiết).
b) ∆DAB và ∆BCD có:
(vì ∆AOD = ∆COB)
BD chung
(vì ∆AOB = ∆COD)
Do đó ∆DAB = ∆BCD (g – c – g).