X

Vở thực hành Toán 9

Cho tam giác ABC có các đường cao AD, BE, CF. Chứng minh rằng BCEF, CAFD, ABDE là những tứ giác nội tiếp


Cho tam giác ABC có các đường cao AD, BE, CF. Chứng minh rằng BCEF, CAFD, ABDE là những tứ giác nội tiếp.

Giải vở thực hành Toán 9 Luyện tập chung trang 106 - Kết nối tri thức

Bài 1 trang 106 VTH Toán 9 Tập 2: Cho tam giác ABC có các đường cao AD, BE, CF. Chứng minh rằng BCEF, CAFD, ABDE là những tứ giác nội tiếp.

Lời giải:

Cho tam giác ABC có các đường cao AD, BE, CF. Chứng minh rằng BCEF, CAFD, ABDE là những tứ giác nội tiếp

Lấy M là trung điểm của BC. Do BCE, BCF là các tam giác vuông có chung cạnh huyền BC nên ME = MB = MC = MF. Do đó đường tròn (M, MB) ngoại tiếp tứ giác BCEF.

Tương tự, CAFD và ABDE cũng là các tứ giác nội tiếp.

Lời giải vở thực hành Toán 9 Luyện tập chung trang 106 hay khác:

Xem thêm các bài giải vở thực hành Toán lớp 9 Kết nối tri thức hay, chi tiết khác: