Bài 3.20 trang 60 Chuyên đề Toán 10


Giải Chuyên đề Toán 10 Bài 8: Sự thống nhất giữa ba đường conic

Haylamdo biên soạn và sưu tầm lời giải Bài 3.20 trang 60 Chuyên đề Toán 10 trong Bài 8: Sự thống nhất giữa ba đường conic. Với lời giải chi tiết nhất hy vọng sẽ giúp học sinh biết cách làm bài tập Chuyên đề Toán 10.

Bài 3.20 trang 60 Chuyên đề Toán 10: Quỹ đạo chuyển động của sao chổi Halley là một elip, nhận tâm Mặt Trời là một tiêu điểm, có tâm sai bằng 0,967.

a) Giải thích vì sao ta có thể coi bất kì hình vẽ elip nào với tâm sai bằng 0,967 là hình ảnh thu nhỏ của quỹ đạo sao chổi Halley.

b) Biết khoảng cách gần nhất từ sao chổi Halley đến tâm Mặt Trời là khoảng 88.106 km, tính khoảng cách xa nhất (Theo: nssdc.gsfc. nasa.gov).

Lời giải:

a) Xét hai elip bất kì có cùng tâm sai:

(E1): x2a12+y2b12=1 và (E2): x2a22+y2b22=1 với e1 = e, tức là c1a1=c2a2

a12+b12a1=a22+b22a2a12+b12a12=a22+b22a22

b12a12=b22a22b1a1=b2a2a1a2=b1b2.

Xét phép vị tự tâm O tỉ số a2a1. Khi đó:

Với mỗi điểm M(x; y) thuộc (E1), ta có tương ứng điểm M'(x'; y') = a2a1x;a2a1y.

Vì M(x; y) thuộc (E1) nên x2a12+y2b12=1

a22.x2a12a22+b22.y2b12b22=1a2a1x2a22+b2b1y2b22=1

a2a1x2a22+a2a1y2b22=1

⇒ M' thuộc (E2).

Vậy phép vị tự tâm O tỉ số a2a1 biến (E1) thành (E2).

Như vây, một elip có cùng tâm sai với một elip khác đều có thể coi là mô hình thu nhỏ của elip đó. Do đó ta có thể coi bất kì hình vẽ elip nào với tâm sai bằng 0,967 là hình ảnh thu nhỏ của quỹ đạo sao chổi Halley.

b) Chọn hệ trục toạ độ sao cho tâm Mặt Trời trùng với tiêu điểm F1 của elip, đơn vị trên các trục là triệu kilômét.

Giả sử phương trình chính tắc của quỹ đạo elip này là x2a2+y2b2=1 (a > b > 0).

Gọi toạ độ của sao chổi Halley là M(x; y).

Khoảng cách giữa sao chổi Halley và tâm Mặt Trời là MF1.

MF1 = a + cax, vì –a ≤ x ≤ a nên a – c ≤ MF1 ≤ a + c

⇒ Khoảng cách gần nhất từ sao chổi Halley đến tâm Mặt Trời là a – c.

Theo đề bài, ta có:

– Khoảng cách gần nhất từ sao chổi Halley đến tâm Mặt Trời là khoảng 88.106 km

⇒ a – c = 88.

– Elip có tâm sai bằng 0,967

ca=0,967a1=c0,967=ac10,967=8810,967=80003

⇒ a = 80003, c = 77363.

⇒ Khoảng cách xa nhất từ sao chổi Halley đến tâm Mặt Trời là:

a + c = 157363 ≈ 5245,3 (triệu kilômét).

Vậy khoảng cách xa nhất từ sao chổi Halley đến tâm Mặt Trời là khoảng 5245,3.106 kilômét.

Xem thêm lời giải bài tập Chuyên đề Toán 10 Kết nối tri thức hay, chi tiết khác: