Bài 3.22 trang 61 Chuyên đề Toán 10


Giải Chuyên đề Toán 10 Bài tập cuối chuyên đề 3

Haylamdo biên soạn và sưu tầm lời giải Bài 3.22 trang 61 Chuyên đề Toán 10 trong Bài tập cuối chuyên đề 3. Với lời giải chi tiết nhất hy vọng sẽ giúp học sinh biết cách làm bài tập Chuyên đề Toán 10.

Bài 3.22 trang 61 Chuyên đề Toán 10: Viết phương trình đường conic có tâm sai e = 12, một tiêu điểm F(–1; 0) và đường chuẩn tương ứng là Δ: x + y + 1 = 0. Cho biết conic đó là đường gì?

Lời giải:

Xét điểm M(x; y) thuộc conic.

M(x; y) thuộc đường conic đã cho khi và chỉ khi

MFdM,Δ=12x+12+y02x+y+112+12=12

x+12+y2=12.x+y+112+12

x+12+y2=x+y+12

2x+12+y2=x+y+1

4x+12+y2=x+y+12

4x2+2x+1+y2=x2+y2+1+2xy+2x+2y

⇔ 4x2 + 8x + 4 + 4y2 = x2 + y2 + 1 + 2xy + 2x + 2y

⇔ 3x2 + 3y2 – 2xy + 6x – 2y +3 = 0

Conic này là elip vì có tâm sai lớn hơn 0 và nhỏ hơn 1.

Xem thêm lời giải bài tập Chuyên đề Toán 10 Kết nối tri thức hay, chi tiết khác: