Xét sự đồng biến, nghịch biến của các hàm số: y = x − sinx, x ∈ [0; 2π]; y = sin(1/x), (x > 0)
Bài 1: Sự đồng biến, nghịch biến của hàm số
Giải bài 4 trang 8 SBT Giải tích 12 Bài 1: Sự đồng biến, nghịch biến của hàm số giúp học sinh biết cách làm bài tập trong SBT Toán 12.
Bài 1.4 trang 8 Sách bài tập Giải tích 12: Xét sự đồng biến, nghịch biến của các hàm số:
a) y = x − sinx, x ∈ [0; 2π].
c) y = sin(1/x), (x > 0)
Lời giải:
a) y = x – sinx, x ∈ [0; 2π].
y′ = 1 – cosx ≥ 0 với mọi x ∈ [0; 2π]
Dấu “=” xảy ra chỉ tại x = 0 và x = 2π.
Vậy hàm số đồng biến trên đoạn [0; 2π].
c) Xét hàm số y = sin(1/x) với x > 0.
Giải bất phương trình sau trên khoảng (0; +∞):
Do đó, hàm số đồng biến trên các khoảng
Và nghịch biến trên các khoảng
với k = 0, 1, 2 …