X

Giải sách bài tập Toán 12

Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Bằng phương pháp tọa độ hãy tính khoảng cách


Bài 3: Phương trình đường thẳng

Bài 3.43 trang 132 Sách bài tập Hình học 12: Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Bằng phương pháp tọa độ hãy tính khoảng cách giữa hai đường thẳng CA’ và DD’.

Lời giải:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta chọn hệ trục tọa độ sao cho: C là gốc tọa độ, CD = ai; CB = aj; CC' = ak

Trong hệ tọa độ vừa chọn ta có: C(0; 0; 0), A’(a; a ; a), D(a; 0; 0), D’(a; 0; a)

CA' = (a; a; a), DD' = (0; 0; a)

Gọi (α) là mặt phẳng chứa CA' và song song với DD'. Mặt phẳng (α) có vecto pháp tuyến là: n = CA'DD' = (a2; −a2; 0) hay x – y = 0

Phương trình tổng quát của (α) là x – y = 0.

Ta có:

d(CA′, DD′) = d(D,(α)) = Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy khoảng cách giữa hai đường thẳng CA’ và DD’ là Giải sách bài tập Toán 12 | Giải sbt Toán 12

Xem thêm Các bài giải sách bài tập 12 khác: