Cho hàm số. Xác định a để hàm số luôn đồng biến. Xác định a để đồ thị của hàm số cắt trục hoành
Bài tập ôn tập chương 1
Giải bài 77 trang 40 SBT Giải tích 12 Bài tập ôn tập chương 1 giúp học sinh biết cách làm bài tập trong SBT Toán 12.
Bài 1.77 trang 40 Sách bài tập Giải tích 12: Cho hàm số
a) Xác định a để hàm số luôn đồng biến.
b) Xác định a để đồ thị của hàm số cắt trục hoành tại ba điểm phân biệt.
c) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số ứng với a = 3/2.
Từ đó suy ra đồ thị của hàm số
Lời giải:
a) Ta có
y' = (a - 1)x2 + 2ax + 3a - 2.
Với a = 1, y' = 2x + 1 đổi dấu khi x đi qua -1/2. Hàm số không đồng biến.
Với a ≠ 1 thì với mọi x mà tại đó y' ≥ 0
(y' = 0 chỉ tại x = -2, khi a = 2).
Vậy với a ≥ 2 hàm số luôn đồng biến
b) Đồ thị cắt trục hoành tại ba điểm phân biệt khi và chỉ khi phương trình y = 0 có ba nghiệm phân biệt. Ta có
y = 0 có ba nghiệm phân biệt khi và chỉ khi phương trình
(a - 1)x2 + 3ax + 9a - 6 = 0
Có hai nghiệm phân biệt khác 0. Muốn vậy, ta phải có
Giải hệ trên, ta được:
c) Khi a = 3/2 thì
y' = 0 ⇔ x2 + 6x + 5 = 0 ⇔ x = -1 hoặc x = -5.
Đồ thị như trên Hình 1.18
Vì
nên từ đồ thị (C) ta suy ngay ra đồ thị của hàm số
như trên Hình 1.19