X

Giải sách bài tập Toán 12

Cho hàm số : y = x^3 – 3x^2. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho


Bài tập ôn tập chương 1

Giải bài 78 trang 40 SBT Giải tích 12 Bài tập ôn tập chương 1 giúp học sinh biết cách làm bài tập trong SBT Toán 12.

Bài 1.78 trang 40 Sách bài tập Giải tích 12: Cho hàm số : y = x3 – 3x2

a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho.

b) Tìm các giá trị của tham số m để phương trình: x3 – 3x2 – m = 0 có ba nghiệm phân biệt.

(Đề thi tốt nghiệp THPT năm 2008).

Lời giải:

a) TXĐ: D = R

Sự biến thiên:

y′ = 3x2 – 6x = 3x(x – 2)

y′=0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số đồng biến trên mỗi khoảng (–∞;0), (2;+∞)

Hàm số nghịch biến trên khoảng (0; 2).

Hàm số đạt cực đại tại x = 0 ; y = y(0) = 0

Hàm số đạt cực tiểu tại x = 2; yCT = y(2) = -4.

Giới hạn: Giải sách bài tập Toán 12 | Giải sbt Toán 12

Điểm uốn: y” = 6x – 6, y” = 0 ⇔ x = 1; y(1) = –2

Suy ra đồ thị có điểm uốn I(1; -2)

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị cắt trục hoành tại O(0;0), A(3;0). Đồ thị đi qua điểm B(-1;-4); C(2;-4).

b) x3 – 3x2 – m = 0 ⇔ x3 – 3x2 = mx3 – 3x2 – m = 0 ⇔ x3 – 3x2 = m (∗)

Phương trình (∗) có 3 nghiệm phân biệt khi và chỉ khi đường thẳng y = m cắt (C) tại 3 điểm phân biệt. Từ đó suy ra: – 4 < m < 0.

Xem thêm Các bài giải sách bài tập 12 khác: