(SGK + SBT) Giải Toán 8 trang 93 Kết nối tri thức, Chân trời sáng tạo, Cánh diều


Haylamdo giới thiệu lời giải bài tập Toán 8 trang 93 Kết nối tri thức, Chân trời sáng tạo, Cánh diều sẽ giúp học sinh lớp 8 dễ dàng làm bài tập Toán 8 trang 93.

(SGK + SBT) Giải Toán 8 trang 93 Kết nối tri thức, Chân trời sáng tạo, Cánh diều

- Toán lớp 8 trang 93 Tập 1 (sách mới):

- Toán lớp 8 trang 93 Tập 2 (sách mới):




Lưu trữ: Giải SBT Toán 8 trang 93 (sách cũ)

Bài 106 trang 93 SBT Toán 8 Tập 1: Tính đường chéo d của một hình chữ nhật, biết các cạnh a = 3cm, b = 5cm (làm tròn kết quả đến chữ số thập phân thứ nhất).

Lời giải:

Bài 106, 107, 108, 109, 110 trang 93 SBT Toán 8 tập 1 | Giải sách bài tập Toán lớp 8

Giả sử hình chữ nhật ABCD có AB = a = 3cm; BC = b = 5cm; AC = d.

Áp dụng định lí Pi-ta-go vào tam giác vuông ABD, ta có:

d2 = a2 + b2

⇒ d2 = 32 + 52 = 9 + 25 = 34

Vậy d √34 (cm).

Bài 107 trang 93 SBT Toán 8 Tập 1: Chứng minh rằng trong hình chữ nhật:

a. Giao điểm của hai đường chéo là tâm đối xứng của hình.

b. Hai đường thẳng đi qua trung điểm, của hai cạnh đối là trục đối xứng của hình.

Lời giải:

Bài 106, 107, 108, 109, 110 trang 93 SBT Toán 8 tập 1 | Giải sách bài tập Toán lớp 8

a. Gọi O là giao điểm hai đường chéo AC và BD.

Vì hình chữ nhật là một hình bình hành nên điểm O là tâm đối xứng của nó.

b. Trong hình thang cân, đường thẳng đi qua trung điểm của hai đáy là trục đối xứng của nó.

Theo định nghĩa ta có hình chữ nhật cũng là một hình thang cân. Nếu ta xem hình chữ nhật ABCD là hình thang cân có hai cạnh đáy AB và CD thì đường thẳng d1 đi qua trung điểm của AB và CD là trục đối xứng của hình chữ nhật ABCD.

Nếu ta xem hình chữ nhật ABCD là hình thang cân có hai cạnh đáy AD và BC thì đường thẳng d1 đi qua trung điểm của AD và BC là trục đối xứng của hình chữ nhật ABCD.

Bài 108 trang 93 SBT Toán 8 Tập 1: Tính độ dài đường trung tuyến ứng với cạnh huyền của một tam giác vuông có các cạnh góc vuông bằng 5cm và 10cm. (làm tròn kết quả đến chữ số thập phân thứ nhất)

Lời giải:

Bài 106, 107, 108, 109, 110 trang 93 SBT Toán 8 tập 1 | Giải sách bài tập Toán lớp 8

Giả sử tam giác ABC có ∠A = 90o, M trung điểm BC; AB = 5cm, AC = 10cm

Áp dụng định lý Pi-ta-go vào tam giác vuông ABC, ta có:

BC2 = AB2 + AC2

BC = √(52 + 102 ) = √125 ≈ 11,2 (cm)

Mà AM = 1/2 BC (tính chất tam giác vuông)

⇒ AM = 1/2 .11,2 = 5,6 (cm)

Bài 109 trang 93 SBT Toán 8 Tập 1: Tính x trong hình dưới.

Lời giải:

Bài 106, 107, 108, 109, 110 trang 93 SBT Toán 8 tập 1 | Giải sách bài tập Toán lớp 8

Kẻ BH ⊥ CD,ta có: ∠A = 90o, ∠D = 90o, ∠(BHD) = 90o

Suy ra tứ giác ABHD là hình chữ nhật (vì có ba góc vuông)

⇒ AB = DH, BH = AD

HC = CD – DH = CD – AB = 24 – 16 = 8 (cm)

Trong tam giác vuông BHC, theo định lý Pi-ta-go, ta có:

BC2 = BH2 + HC2

⇒ BH2 = BC2 - HC2

BH2 = l72 - 82 = 289 – 64 = 225

BH = √225 = 15 (cm)

Vậy x = AD = BH = 15 (cm).

Bài 110 trang 93 SBT Toán 8 Tập 1: Chứng minh rằng các tia phân giác các góc của hình bỉnh hành cắt nhau tạo thành một hình chữ nhật.

Lời giải:

Bài 106, 107, 108, 109, 110 trang 93 SBT Toán 8 tập 1 | Giải sách bài tập Toán lớp 8

Gọi G, H, E, F lần lượt là giao điểm của các đường phân giác của ∠Avà ∠B; ∠Bvà ∠C; ∠Cvà ∠D; ∠Dvà ∠A

Ta có: ∠(ADF) = 1/2 ∠(ADC) (gt)

∠(DAF) = 1/2 ∠(DAB) (gt)

∠(ADC) + ∠(DAB) = 180o (hai góc trong cùng phía)

Suy ra: ∠(ADF) + ∠(DAF) = 1/2 (∠(ADC) + ∠(DAB) ) = 1/2 .180o = 90o

Trong ΔAFD, ta có:

∠(AFD) = 180o – (∠(ADF) + ∠(DAF)) = 180o – 90o = 90o

∠(EFG) = ∠(AFD) (đối đỉnh)

⇒ ∠(EFG) = 90o

∠(GAB) = 1/2 ∠(DAB) (gt)

∠(GBA) = 1/2 ∠(CBA) (gt)

∠(DAB) + ∠(CBA) = 180o (hai góc trong cùng phía)

⇒ (GAB) + (GBA) = 1/2 (∠(DAB) + ∠(CBA) ) = 1/2 .180o = 90o

Trong ΔAGB ta có: ∠(AGB) = 180o – (∠(GAB) + ∠(GBA) ) = 1/2 .180o = 90o

Hay ∠G = 90o

∠(EDC) = 1/2 ∠(ADC) (gt)

∠(ECD) = 1/2 ∠(BCD) (gt)

∠(ADC) + ∠(BCD) = 180o (hai góc trong cùng phía)

⇒ ∠(EDC) + ∠(ECD) = 1/2 (∠(ADC) + ∠(BCD) ) = 1/2 .180o = 90o

Trong ΔEDC ta có: ∠(DEC) = 180o – (∠(EDC) + ∠(ECD) ) = 1/2 .180o = 90o

Hay ∠E = 90o

Vậy tứ giác EFGH là hình chữ nhật (vì có ba góc vuông).

Xem thêm các bài Giải sách bài tập Toán 8 khác: