Nêu mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai của mỗi mệnh đề phủ định đó


Giải sách bài tập Toán 10 Bài 1: Mệnh đề

Haylamdo biên soạn và sưu tầm lời giải Bài 11 trang 9 SBT Toán 10 Tập 1 trong Bài 1: Mệnh đề. Với lời giải chi tiết nhất hy vọng sẽ giúp các bạn dễ dàng nắm được cách làm bài tập trong Sách bài tập Toán 10.

Bài 11 trang 9 SBT Toán 10 Tập 1: Nêu mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai của mỗi mệnh đề phủ định đó:

a) A: “Trục đối xứng của đồ thị hàm số y = – x2 là trục tung”;

b) B: “Phương trình 3x2 + 1 có nghiệm”;

c) C: “Hai đường thẳng y = 2x + 1 và y = – 2x + 1 không song song với nhau”;

d) D: “Số 2 024 không chia hết cho 4”.

Lời giải:

a) Mệnh đề phủ định của mệnh đề A: “Trục đối xứng của đồ thị hàm số y = – x2 là trục tung” là A¯: “Trục đối xứng của đồ thị hàm số y = – x2 không phải là trục tung”.

Hàm số y = – x2 có trục đối xứng là trục tung. Do đó mệnh đề A đúng, mệnh đề A¯ sai.

b) Mệnh đề phủ định của mệnh đề B: “Phương trình 3x2 + 1 có nghiệm” là B¯: “Phương trình 3x2 + 1 vô nghiệm”.

Xét phương trình 3x2 + 1 = 0

⇔ 3x2 = – 1 (vô lí)

Suy ra phương trình đã cho vô nghiệm.

Do đó mệnh đề B sai, mệnh đề B¯ đúng.

c) Mệnh đề phủ định của mệnh đề C: “không song song với nhau” là mệnh đề C¯: “Hai đường thẳng y = 2x + 1 và y = – 2x + 1 song song với nhau”.

Ta có y = 2x + 1 có a = 2, b = 1

y = – 2x + 1 có a’ = – 2, b’ = 1

Suy ra a ≠ a’ nên hai đường thẳng y = 2x + 1 và y = – 2x + 1 cắt nhau. Do đó mệnh đề C đúng và mệnh đề C¯ sai.

d) Mệnh đề phủ định của mệnh đề D: “Số 2 024 không chia hết cho 4” là mệnh đề D¯: “Số 2 024 chia hết cho 4”.

Ta có: 2 024 : 4 = 506 nên 2 024 chia hết cho 4. Do đó mệnh đề D sai, mệnh đề D¯ đúng.

Xem thêm lời giải Sách bài tập Toán 10 Cánh diều hay, chi tiết khác: