Trong mặt phẳng toạ độ Oxy cho hai điểm M(–3; 2) và N(2; 7)


Trong mặt phẳng toạ độ Oxy cho hai điểm M(–3; 2) và N(2; 7).

Sách bài tập Toán 10 Kết nối tri thức Bài 10: Vectơ trong mặt phẳng tọa độ

Bài 4.25 trang 59 sách bài tập Toán lớp 10 Tập 1: Trong mặt phẳng toạ độ Oxy cho hai điểm M(–3; 2) và N(2; 7).

a) Tìm toạ độ của điểm P thuộc trục tung sao cho M, N, P thẳng hàng.

b) Tìm toạ độ của điểm Q đối xứng với N qua Oy.

c) Tìm toạ độ của điểm R đối xứng với M qua trục hoành.

Lời giải:

a) Giả sử P(0; yP) là điểm thuộc trục tung.

Với M(–3; 2) và N(2; 7) ta có:

MP=3;yP2NP=2;yP7

Ba điểm M, N, P thẳng hàng

MPNP cùng phương

32=yP2yP7 (với yP ≠ 7)

3.(yP – 7) = –2.(yP – 2)

3.yP – 21 = –2yP + 4

3.yP + 2yP = 4 + 21

5.yP = 25

yP = 5 (thỏa mãn)

Vậy P(0; 5).

b)

Trong mặt phẳng toạ độ Oxy cho hai điểm M(–3; 2) và N(2; 7)

Vì Q đối xứng với N(2; 7) qua Oy nên:

+ Hoành độ của điểm Q là số đối của hoành độ điểm N;

+ Tung độ của điểm Q bằng với tung độ của điểm N.

Do đó Q(–2; 7).

Vậy Q(–2; 7).

c)

Trong mặt phẳng toạ độ Oxy cho hai điểm M(–3; 2) và N(2; 7)

Vì R đối xứng với M(–3; 2) qua trục hoành nên:

+ Hoành độ của điểm R bằng hoành độ điểm M;

+ Tung độ của điểm R bằng số đối của tung độ điểm M.

Do đó R(–3; –2).

Vậy R(–3; –2).

Xem thêm các bài giải sách bài tập Toán lớp 10 sách Kết nối tri thức hay, chi tiết khác: