Trong mặt phẳng toạ độ Oxy cho hai điểm C(1; 6) và D(11; 2)
Trong mặt phẳng toạ độ Oxy cho hai điểm C(1; 6) và D(11; 2).
Sách bài tập Toán 10 Kết nối tri thức Bài 10: Vectơ trong mặt phẳng tọa độ
Bài 4.26 trang 59 sách bài tập Toán lớp 10 Tập 1: Trong mặt phẳng toạ độ Oxy cho hai điểm C(1; 6) và D(11; 2).
a) Tìm toạ độ của điểm E thuộc trục tung sao cho vectơ có độ dài ngắn nhất.
b) Tìm toạ độ của điểm F thuộc trục hoành sao cho đạt giá trị nhỏ nhất.
c) Tìm tập hợp các điểm M sao cho
Lời giải:
a) Giả sử E(0; yE) là điểm thuộc trục tung.
Với C(1; 6) và D(11; 2) ta có:
và
Vì (8 – 2yE)2 ≥ 0 ∀ yE
Nên 122 + (8 – 2yE)2 ≥ 122 ∀ yE
Hay ∀ yE
Do đó độ dài của vectơ nhỏ nhất bằng 12
Dấu “=’ xảy ra 8 – 2yE = 0
yE = 4
Vậy với E(0; 4) thì vectơ có độ dài ngắn nhất.
b) Giả sử F(a; 0) thuộc trục hoành.
Với C(1; 6) và D(11; 2) ta có:
+)
+)
Vì (35 – 5a)2 ≥ 0 ∀a
Nên (35 – 5a)2 + 182 ≥ 182 ∀a
Hay ∀a
Do đó độ dài của vectơ nhỏ nhất bằng 18
Dấu “=’ xảy ra 35 – 5a = 0
a = 7
Vậy với F(7; 0) thì đạt giá trị nhỏ nhất.
c) Giả sử M(x ; y) là tọa độ điểm thỏa mãn
Với C(1; 6) và D(11; 2) ta có:
+)
Gọi I là trung điểm của CD, khi đó ta có:
• Tọa độ của I là:
•
Ta có
Do đó tập hợp điểm M là đường tròn tâm I(6; 4) và bán kính