Cho đường tròn (C) có phương trình x^2 + y^2 + 6x – 4y – 12 = 0


Cho đường tròn (C) có phương trình x + y + 6x – 4y – 12 = 0. Viết phương trình tiếp tuyến Δ của (C) tại điểm M(0; –2).

Sách bài tập Toán 10 Kết nối tri thức Bài 21: Đường tròn trong mặt phẳng tọa độ

Bài 7.23 trang 42 Sách bài tập Toán lớp 10 Tập 2: Cho đường tròn (C) có phương trình x2 + y2 + 6x – 4y – 12 = 0. Viết phương trình tiếp tuyến Δ của (C) tại điểm M(0; –2).

Lời giải:

Xét đường tròn (C) có phương trình: x2 + y2 + 6x – 4y – 12 = 0. Ta có:

Tâm I(a; b) với a = 6 : (–2) = –3, b = –4 : (–2) = 2, do đó, đường tròn (C) có tâm I(–3; 2).

Đường thẳng Δ đi qua điểm M(0; –2) và có vectơ pháp tuyến là n=IM=3;-4 . Phương trình của Δ là

3(x – 0) – 4(y + 2) = 0

⇔ 3x – 4y – 8 = 0.

Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác: