Chứng minh các định lí sau: Cho hai mặt phẳng song song. Nếu một mặt phẳng vuông góc với một trong hai mặt phẳng


Chứng minh các định lí sau:

Giải sách bài tập Toán 11 Bài 4: Hai mặt phẳng vuông góc

Bài 38 trang 104 SBT Toán 11 Tập 2: Chứng minh các định lí sau:

a) Cho hai mặt phẳng song song. Nếu một mặt phẳng vuông góc với một trong hai mặt phẳng đó thì vuông góc với mặt phẳng còn lại.

b) Cho một mặt phẳng và một đường thẳng không vuông góc với mặt phẳng đó. Khi đó tồn tại duy nhất một mặt phẳng chứa đường thẳng đã cho và vuông góc với mặt phẳng đã cho.

Lời giải:

a)

Chứng minh các định lí sau: Cho hai mặt phẳng song song. Nếu một mặt phẳng vuông góc với một trong hai mặt phẳng

Giả sử có ba mặt phẳng (P), (Q), (R) thỏa mãn (P) // (Q) và (R) ⊥ (P). Ta cần chứng minh (R) ⊥ (Q).

Gọi a = (P) ∩ (R), lấy d ⊂ (R) sao cho a ⊥ d.

Ta có: (R) ⊥ (P), a = (R) ∩ (P), d ⊂ (R) và a ⊥ d, suy ra d ⊥ (P).

Mà (P) // (Q), d ⊂ (R) nên d ⊥ (Q).

Suy ra (Q) ⊥ (R).

b) Xét đường thẳng d không vuông góc với mặt phẳng (P). Ta cần chứng minh: tồn tại duy nhất mặt phẳng (Q) vuông góc với (P) và chứa d.

Chứng minh tính tồn tại mặt phẳng (Q):

· Xét trường hợp d cắt (P) tại A.

Chứng minh các định lí sau: Cho hai mặt phẳng song song. Nếu một mặt phẳng vuông góc với một trong hai mặt phẳng

Lấy M ∈ d sao cho M ≠ A. Vẽ đường thẳng a đi qua M sao cho a ⊥ (P).

Suy ra d ∩ a = M.

Khi đó hai đường thẳng a và d xác định mặt phẳng (Q) hay mặt phẳng (Q) chứa hai đường thẳng a và d.

Vì a ⊥ (P), a ⊂ (Q) nên ta có (P) ⊥ (Q).

· Xét trường hợp d ⊂ (P) hoặc d // (P).

Chứng minh các định lí sau: Cho hai mặt phẳng song song. Nếu một mặt phẳng vuông góc với một trong hai mặt phẳng

Lấy M ∈ d. Vẽ đường thẳng a đi qua M sao cho a ⊥ (P).

Suy ra d ∩ a = M.

Khi đó hai đường thẳng a và d xác định mặt phẳng (Q) hay mặt phẳng (Q) chứa hai đường thẳng a và d.

Vì a ⊥ (P), a ⊂ (Q) nên ta có (P) ⊥ (Q).

Chứng minh tính duy nhất mặt phẳng (Q):

Giả sử tồn tại mặt phẳng (Q’) khác (Q) sao cho d ⊂ (Q’) và (P) ⊥ (Q’).

Ta thấy: d = (Q’) ∩ (Q).

Mà (P) ⊥ (Q), (P) ⊥ (Q’) nên suy ra d ⊥ (P).

Mâu thuẫn với giả thiết d không vuông góc với (P).

Như vậy, tồn tại duy nhất mặt phẳng (Q) sao cho d ⊂ (Q) và (P) ⊥ (Q).

Lời giải SBT Toán 11 Bài 4: Hai mặt phẳng vuông góc hay khác:

Xem thêm lời giải Sách bài tập Toán 11 Cánh diều hay, chi tiết khác: