Cho tứ diện ABCD có tam giác BCD vuông cân tại B và AB ⊥ (BCD)
Cho tứ diện ABCD có tam giác BCD vuông cân tại B và AB ⊥ (BCD). Cho biết BC = , AB = . Xác định và tính góc giữa hai mặt phẳng (ACD) và (BCD).
Giải sách bài tập Toán 11 Bài 3: Hai mặt phẳng vuông góc - Chân trời sáng tạo
Bài 1 trang 61 SBT Toán 11 Tập 2: Cho tứ diện ABCD có tam giác BCD vuông cân tại B và AB ⊥ (BCD). Cho biết BC = , AB = . Xác định và tính góc giữa hai mặt phẳng (ACD) và (BCD).
Lời giải:
Gọi I là trung điểm của CD.
Ta có: CD ⊥ BI và CD ⊥ AB suy ra CD ⊥ AI.
Ta nhận thấy: CD là giao tuyến của 2 mặt phẳng (ACD) và (BCD);
Mà
Suy ra
Tam giác BCD vuông cân tại B nên
Xét tam giác ABI vuông tại B, ta có:
Vậy góc giữa hai mặt phẳng (ACD) và (BCD) là .
Lời giải SBT Toán 11 Bài 3: Hai mặt phẳng vuông góc hay khác: