Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi (alpha) là mặt phẳng đi qua trung điểm


Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi (α) là mặt phẳng đi qua trung điểm M của cạnh AB, song song với BD và SA. Tìm giao tuyến của mặt phẳng (α) với các mặt của hình chóp.

Giải sách bài tập Toán 11 Bài 3: Đường thẳng và mặt phẳng song song - Chân trời sáng tạo

Bài 5 trang 122 SBT Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi (α) là mặt phẳng đi qua trung điểm M của cạnh AB, song song với BD và SA. Tìm giao tuyến của mặt phẳng (α) với các mặt của hình chóp.

Lời giải:

Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi (alpha) là mặt phẳng đi qua trung điểm

Gọi N, P, R lần lượt là trung điểm của AD, SD, SB.

Xét ∆ABD có M, N lần lượt là trung điểm của AB, AD nên MN là đường trung bình của tam giác. Do đó MN // BD.

Ta có MN // BD và MN ⊂ (MNPR) nên BD // (MNPR)

Tương tự, ta cũng có SA // (MNPR)

Ta thấy (MNPR) đi qua M và song song với BD, và SA nên chính là mp(α).

Trong mặt phẳng (SAB) vẽ đường thẳng d đi qua S và d // AB // CD.

Khi đó, giả sử MR cắt d tại I, PI cắt SC tại Q.

Lúc này, mặt phẳng (α) là (MNPI).

Ta có MN ⊂ (ABCD), MN ⊂ (MNPI) nên (MNPI) ∩ (ABCD) = MN hay (α) ∩ (ABCD) = MN.

Tương tự, (α) ∩ (SAD) = NP, (α) ∩ (SCD) = PQ, (α) ∩ (SBC) = QR, (α) ∩ (SAB) = MR.

Lời giải Sách bài tập Toán lớp 11 Bài 3: Đường thẳng và mặt phẳng song song hay khác:

Xem thêm lời giải Sách bài tập Toán 11 Chân trời sáng tạo hay, chi tiết khác: