Nếu số lượng sản phẩm sản xuất được của một nhà máy là x đơn vị trăm sản phẩm


Nếu số lượng sản phẩm sản xuất được của một nhà máy là x (đơn vị: trăm sản phẩm) thì lợi nhuận sinh ra là P(x) = 200(x – 2)(17 – x) (nghìn đồng). Tính tốc độ thay đổi lợi nhuận của nhà máy đó khi sản xuất 3000 sản phẩm

Giải sách bài tập Toán 11 Bài 2: Các quy tắc tính đạo hàm - Chân trời sáng tạo

Bài 8 trang 44 SBT Toán 11 Tập 2: Nếu số lượng sản phẩm sản xuất được của một nhà máy là x (đơn vị: trăm sản phẩm) thì lợi nhuận sinh ra là P(x) = 200(x – 2)(17 – x) (nghìn đồng). Tính tốc độ thay đổi lợi nhuận của nhà máy đó khi sản xuất 3000 sản phẩm

Lời giải:

Nếu số lượng sản phẩm sản xuất được của một nhà máy là x đơn vị trăm sản phẩm

P'30=400.30+3800=8200

Vậy tốc độ thay đổi lợi nhuận của nhà máy đó khi sản xuất 3000 sản phẩm là –8200 nghìn đồng.

Lời giải SBT Toán 11 Bài 2: Các quy tắc tính đạo hàm hay khác:

Xem thêm lời giải Sách bài tập Toán 11 Chân trời sáng tạo hay, chi tiết khác: