Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Chứng minh rằng:
Giải sách bài tập Toán 11 Bài 23: Đường thẳng vuông góc với mặt phẳng - Kết nối tri thức
Bài 7.10 trang 28 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Chứng minh rằng:
a) SO (ABCD);
b) AC (SBD) và BD (SAC).
Lời giải:
a)
Vì ABCD là hình thoi, O là giao điểm của AC và BD nên O là trung điểm của AC, BD.
Xét tam giác SAC có SA = SC, SO là trung tuyến nên SO là đường cao hay SO AC.
Xét tam giác SBD có SB = SD, SO là trung tuyến nên SO là đường cao hay SO BD.
Do đó SO (ABCD).
b) Do ABCD là hình thoi nên AC BD. (1)
Mà SO (ABCD) nên AC SO (2) và BD SO (3).
Từ (1) và (2), suy ra AC (SBD).
Từ (1) và (3), suy ra BD (SAC).
Lời giải SBT Toán 11 Bài 23: Đường thẳng vuông góc với mặt phẳng hay khác: