Trong không gian Oxyz cho điểm H(3; 2; 4) trang 24 SBT Toán 12 Tập 2
Giải sách bài tập Toán 12 Bài 14: Phương trình mặt phẳng - Kết nối tri thức
Bài 5.5 trang 24 SBT Toán 12 Tập 2: Trong không gian Oxyz, cho điểm H(3; 2; 4).
a) Viết phương trình mặt phẳng (P) chứa điểm H và trục Oy.
b) Viết phương trình mặt phẳng (Q) đi qua điểm H và cắt các trục tọa độ Ox, Oy, Oz lần lượt tại các điểm A, B, C (với A, B, C đều không trùng khớp với gốc tọa độ O) sao cho H là trực tâm tam giác ABC.
Lời giải:
a) Ta có: = (3; 2; 4), = (0; 1; 0) ( là vectơ chỉ phương của Oy).
Vì mặt phẳng (P) chứa điểm H và trục Oy nên
= (−4; 0; 3).
Vậy phương trình mặt phẳng (P) là:
−4(x – 0) + 0(y – 0) +3(z – 0) = 0
⇔ −4x + 3z = 0.
b) Do H là trực tâm tam giác ABC nên OH ⊥ (ABC)
⇒ = (3; 2; 4) là một vectơ pháp tuyến của mặt phẳng (ABC). Phương trình mặt phẳng (ABC) là:
3(x – 3) + 2(y – 2) + 4(z – 4) = 0
⇔ 3x + 2y + 4z – 29 = 0.
Lời giải Sách bài tập Toán lớp 12 Bài 14: Phương trình mặt phẳng hay khác: