Tìm tất cả các số tự nhiên a khác 0 và b khác 0 sao cho a + b = 96 và ƯCLN(a, b) = 16
Giải sách bài tập Toán lớp 6 Bài 11: Ước chung. Ước chung lớn nhất
Bài 2.42 trang 40 sách bài tập Toán lớp 6 Tập 1 - Kết nối tri thức với cuộc sống: Tìm tất cả các số tự nhiên a khác 0 và b khác 0 sao cho a + b = 96 và ƯCLN(a, b) = 16.
Lời giải:
Vì ƯCLN(a, b) = 16 ⇒ a và b là bội của 16, ta giả sử a = 16m; b = 16n với
ƯCLN(m, n) = 1 và do các số tự nhiên khác 0 nên m,n ∈ N*
Ta có a + b = 96 nên 16. m + 16. n = 96
16. (m + n) = 96
m + n = 96: 16
m + n = 6
Ta có bảng sau:
m |
1 |
2 |
3 |
4 |
5 |
n |
5 |
4 |
3 |
2 |
1 |
ƯCLN(m, n) = 1 |
TM |
KTM |
KTM |
KTM |
TM |
+) Với m = 1; n = 5 ta được a = 1. 16 = 16; b = 5. 16 = 80
+) Với m = 5; n = 1, ta được a = 5. 16 = 80; b = 1. 16 = 16
Vậy các cặp số (a; b) thỏa mãn là (16; 80); (80; 16)