X

SBT Toán 7 Kết nối tri thức

Chứng minh rằng tích của hai số tự nhiên lẻ liên tiếp cộng thêm 1 thì luôn chia hết cho 4


Chứng minh rằng tích của hai số tự nhiên lẻ liên tiếp cộng thêm 1 thì luôn chia hết cho 4.

Giải SBT Toán 7 Kết nối tri thức Bài 27: Phép nhân đa thức một biến

Bài 7.24 trang 30 sách bài tập Toán lớp 7 Tập 2: Chứng minh rằng tích của hai số tự nhiên lẻ liên tiếp cộng thêm 1 thì luôn chia hết cho 4.

Gợi ý: Mỗi số tự nhiên lẻ luôn viết được dưới dạng 2n – 1 với n ∈ ℕ*, hoặc dưới dạng 2n + 1 với n ∈ ℕ.

Lời giải:

Hai số tự nhiên lẻ liên tiếp hơn kém nhau 2 đơn vị nên nếu số thứ nhất là:

a = 2n − 1 (n ∈ ℕ*)

Thì số thứ hai là b = a + 2 = 2n + 1

Khi đó:

ab + 1 = (2n − 1)(2n + 1) + 1 = (4n2 + 2n − 2n − 1) + 1 = 4n2

Rõ ràng 4n2 chia hết cho 4 nên ta có điều phải chứng minh.

Chú ý. Nếu viết hai số lẻ liên tiếp là a = 2n + 1 và b = a + 2 = 2n + 3 (n ∈ ℕ) thì:

ab + 1 = (2n + 1)(2n + 3) + 1 = 4(n2 + 2n + 1) ⋮ 4

Xem thêm các bài giải sách bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác: