Bằng cách tính giá trị của đa thức F(x) = x^3 + 2x^2 + x
Bằng cách tính giá trị của đa thức F(x) = x + 2x + x tại các giá trị của x thuộc tập hợp {−2; −1; 0; 1; 0}, hãy tìm hai nghiệm của đa thức F(x).
Giải SBT Toán 7 Kết nối tri thức Bài 25: Đa thức một biến
Bài 7.9 trang 25 sách bài tập Toán lớp 7 Tập 2: Bằng cách tính giá trị của đa thức F(x) = x3 + 2x2 + x tại các giá trị của x thuộc tập hợp {−2; −1; 0; 1; 0}, hãy tìm hai nghiệm của đa thức F(x).
Lời giải:
Ta có: F(−2) = (−2)3 + 2 . (−2)2 − 2 = −8 + 2.4 − 2 = −8 + 8 − 2 = −2.
F(−1) = (−1)3 + 2 . (−1)2 − 1 = −1 + 2.1 − 1 = −1 + 2 − 1 = 0.
F(0) = 03 + 2 . 02 − 0 = 0.
F(2) = (2)3 + 2 . 22 + 2 = 8 + 2.4 + 2 = 8 + 8 + 2 = 18.
Vậy hai nghiệm của đa thức F(x) là x = −1 và x = 0.