Một tam giác vuông có độ dài cạnh nhỏ nhất là 5 cm, cạnh huyền có độ dài lớn
Một tam giác vuông có độ dài cạnh nhỏ nhất là 5 cm, cạnh huyền có độ dài lớn hơn độ dài cạnh góc vuông còn lại là 1 cm. Tính độ dài cạnh huyền của tam giác vuông đó.
Giải SBT Toán 8 Bài tập cuối chương 7 - Cánh diều
Bài 34 trang 50 SBT Toán 8 Tập 2: Một tam giác vuông có độ dài cạnh nhỏ nhất là 5 cm, cạnh huyền có độ dài lớn hơn độ dài cạnh góc vuông còn lại là 1 cm. Tính độ dài cạnh huyền của tam giác vuông đó.
Lời giải:
Gọi độ dài cạnh huyền của tam giác vuông đó là x (cm), x > 5.
Độ dài cạnh góc vuông còn lại là x ‒ 1 (cm).
Áp dụng định lý Pythagore trong tam giác vuông, ta có phương trình:
(x ‒ 1)2 + 52 = x2.
Giải phương trình:
(x ‒ 1)2 + 52 = x2
x2 ‒ 2x + 1 + 25 = x2
x2 ‒ x2 ‒ 2x = ‒25 ‒ 1
‒2x = ‒26
x = 13 (thoả mãn điều kiện).
Vậy độ dài cạnh huyền của tam giác vuông đó là 13 cm.
Lời giải SBT Toán 8 Bài tập cuối chương 7 hay khác:
Bài 20 trang 49 SBT Toán 8 Tập 2: Phương trình nào sau đây là phương trình bậc nhất một ẩn? ....
Bài 21 trang 49 SBT Toán 8 Tập 2: Nghiệm của phương trình 3x ‒ 4 = 0 là ....
Bài 22 trang 49 SBT Toán 8 Tập 2: Nghiệm của phương trình 4x + 3 = 0 là ....
Bài 23 trang 49 SBT Toán 8 Tập 2: Phương trình nào sau đây nhận x = ‒1 làm nghiệm? ....
Bài 24 trang 49 SBT Toán 8 Tập 2: Giải các phương trình sau: a) 0,1x ‒ 5 = 0,2 ‒ x ....