Cho đa giác đều A1A2A3…An – 1An (n > 3, n ∈ ℕ). Chứng minh các đường trung trực


Cho đa giác đều A1A2A3…An – 1An (n > 3, n ∈ ℕ). Chứng minh các đường trung trực của các cạnh A1A2, A2A3, …, An – 1An, AnA¬1 cùng đi qua một điểm.

Giải SBT Toán 9 Bài 1: Đa giác đều. Hình đa giác đều trong thực tiễn - Cánh diều

Bài 12 trang 108 SBT Toán 9 Tập 2: Cho đa giác đều A1A2A3…An – 1An (n > 3, n ∈ ℕ). Chứng minh các đường trung trực của các cạnh A1A2, A2A3, …, An – 1An, AnA¬1 cùng đi qua một điểm.

Lời giải:

Gọi O là tâm của đa giác đều A1A2A3…An – 1An.

Ta có OA1 = OA2 suy ra O nằm trên đường trung trực của cạnh A1A2.

Tương tự ta có O nằm trên các đường trung trực của các đoạn A2A3, …, An – 1An, AnA­1.

Suy ra các đường trung trực của các cạnh A1A2, A2A3, …, An – 1An, AnA­1 cùng đi qua một điểm, điểm đó là tâm của đa giác đều.

Lời giải SBT Toán 9 Bài 1: Đa giác đều. Hình đa giác đều trong thực tiễn hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 9 Cánh diều hay, chi tiết khác: