Cho ngũ giác đều ABCDE và một điểm M nằm trong ngũ giác. Gọi A’, B’, C’, D’, E’ lần lượt là các điểm


Cho ngũ giác đều ABCDE và một điểm M nằm trong ngũ giác. Gọi A’, B’, C’, D’, E’ lần lượt là các điểm nằm trên các đoạn thẳng MA, MB, MC, MD, ME sao cho Chứng minh ngũ giác A’B’C’D’E’ là ngũ giác đều.

Giải SBT Toán 9 Bài 1: Đa giác đều. Hình đa giác đều trong thực tiễn - Cánh diều

Bài 6 trang 107 SBT Toán 9 Tập 2: Cho ngũ giác đều ABCDE và một điểm M nằm trong ngũ giác. Gọi A’, B’, C’, D’, E’ lần lượt là các điểm nằm trên các đoạn thẳng MA, MB, MC, MD, ME sao cho MA'MA=MB'MB=13,  CC'MC=DD'MD=23,  ME'E'E=12. Chứng minh ngũ giác A’B’C’D’E’ là ngũ giác đều.

Lời giải:

Cho ngũ giác đều ABCDE và một điểm M nằm trong ngũ giác. Gọi A’, B’, C’, D’, E’ lần lượt là các điểm

Từ MA'MA=MB'MB=13,  CC'MC=DD'MD=23,  ME'E'E=12 suy ra:

                      MA'MA=MB'MB=MC'MC=MD'MD=ME'ME=13.    1

Do đó: A’B’ // AB, B’C’ // BC, C’D’ // CD, D’E’ // DE, E’A’ // EA (định lí Thalès đảo).

Do A’B’ // AB nên MA'B'^=MAB^ (đồng vị);

Do E’A’ // EA nên MA'E'^=MAE^ (đồng vị).

Suy ra MA'B'^+MA'E'^=MAB^+MAE^

Hay B'A'E'^=BAE^.

Chứng minh tương tự, ta được các góc A’, B’, C’, D’, E’ của ngũ giác A’B’C’D’E’ tương ứng bằng các góc A, B, C, D, E của ngũ giác đều ABCDE.

Mà ABCDE là ngũ giác đều nên góc A, B, C, D, E của ngũ giác bằng nhau.

Do đó các góc của ngũ giác A’B’C’D’E’ bằng nhau. (2)

Mặt khác, từ (1) ta cũng chứng minh được:

          A'B'=AB3; B'C'=BC3; C'D'=CD3; D'E'=DE3; E'A'=EA3.

Mà ABCDE là ngũ giác đều nên AB = BC = CD = DE = EA.

Do đó: A’B’ = B’C’ = C’D’ = D’E’ = E’A’. (3)

Từ (2) và (3) suy ra ngũ giác A’B’C’D’E’ là ngũ giác đều.

Lời giải SBT Toán 9 Bài 1: Đa giác đều. Hình đa giác đều trong thực tiễn hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 9 Cánh diều hay, chi tiết khác: