Bài 5 trang 61 Toán 10 Tập 1 Cánh diều


Vẽ đồ thị của mỗi hàm số sau:

Giải Toán lớp 10 Bài tập cuối chương 3

Bài 5 trang 61 Toán lớp 10 Tập 1: Vẽ đồ thị của mỗi hàm số sau:

a) y = x2 – 3x – 4; 

b) y = x2 + 2x + 1; 

c) y = – x2 + 2x – 2. 

Lời giải:

a) y = x2 – 3x – 4

Ta có: hệ số a = 1 > 0, b = – 3, c = – 4, ∆ = (– 3)2 – 4 . 1 . (– 4) = 25 > 0.

- Parabol có bề lõm hướng lên trên.

- Tọa độ đỉnh I 32;254.

- Trục đối xứng x=32.

- Giao của parabol với trục tung là A(0; – 4).

- Giao với trục hoành tại các điểm B(– 1; 0) và C(4; 0).

- Điểm đối xứng với điểm A(0; – 4) qua trục đối xứng x=32 là điểm D(3; – 4).

Vẽ đường cong đi qua các điểm trên ta được đồ thị của hàm số y = x2 – 3x – 4 như hình dưới. 

Bài 5 trang 61 Toán 10 Tập 1 Cánh diều

b) y = x2 + 2x + 1

Ta có hệ số a = 1 > 0, b = 2, c = 1, ∆ = 22 – 4 . 1 . 1 = 0.

- Parabol có bề lõm hướng lên trên. 

- Tọa độ đỉnh I(– 1; 0). 

- Trục đối xứng x = – 1. 

- Giao của parabol với trục tung A(0; 1).

- Giao của parabol với trục hoành chính là đỉnh I(– 1; 0).

- Điểm đối xứng với điểm A(0; 1) qua trục đối xứng x = – 1 là điểm B(– 2; 1). 

Vẽ đường cong đi qua các điểm trên ta được đồ thị hàm số y = x2 + 2x + 1 như hình dưới. 

Bài 5 trang 61 Toán 10 Tập 1 Cánh diều

c) y = – x2 + 2x – 2

Ta có hệ số a = – 1 < 0, b = 2, c = – 2 và ∆ = 22 – 4 . (– 1) . (– 2) = – 4. 

- Đồ thị hàm số có bề lõm hướng xuống dưới. 

- Tọa độ đỉnh I(1; – 1).

- Trục đối xứng x = 1.

- Giao của parabol với trục tung là A(0; – 2). Điểm đối xứng với A qua trục đối xứng x = 1 là B(2; – 2).

- Parabol không cắt trục hoành.

- Lấy điểm C(3; – 5) thuộc đồ thị hàm số, ta có điểm đối xứng với điểm C qua trục x = 1 là điểm D(– 1; – 5).

Vẽ đồ thị đi qua các điểm trên ta được đồ thị hàm số y = – x2 + 2x – 2 như hình vẽ dưới. 

Bài 5 trang 61 Toán 10 Tập 1 Cánh diều

Lời giải bài tập Toán 10 Bài tập cuối chương 3 hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: