Cho A = (– ∞; – 2], B = [3; + ∞), C = (0; 4). Khi đó tập (A ∪ B) giao C là:


Câu hỏi:

Cho A = (– ∞; – 2], B = [3; + ∞), C = (0; 4). Khi đó tập (A B) ∩ C là:

A. [3; 4];
B. (– ∞; – 2] (3; + ∞);
C. [3; 4);
D. (– ∞; – 2) [3; + ∞).

Trả lời:

Hướng dẫn giải

Đáp án đúng là: C

Ta có: A B = (– ∞; – 2) [3; + ∞)

(A B) ∩ C = (– ∞; – 2) [3; + ∞) ∩ (0; 4) = [3; 4).

Xem thêm bài tập Toán 10 CD có lời giải hay khác:

Câu 1:

Liệt kê các phần tử của tập hợp E = {x ℕ| 2x2 – 3x + 1 = 0}:

Xem lời giải »


Câu 2:

Cho tập hợp A = {1; 3; 5; 7}. Tập hợp A có bao nhiêu tập con có hai phần tử?

Xem lời giải »


Câu 3:

Cho các tập hợp A = {1; 5}, B = {1; 3; 5}. Chọn kết quả đúng trong các kết quả sau:

Xem lời giải »


Câu 4:

Cho tập hợp C = [–5; 3), D = (1; +∞). Khi đó C ∩ D là tập nào sau đây?

Xem lời giải »


Câu 5:

Cho hai tập hợp A = {x ℤ| (x2 – 10x + 21)(x3 – x) = 0}, B = {x ℤ| – 3 < 2x + 1 < 5}. Khi đó tập X = A \ B là:

Xem lời giải »


Câu 6:

Cho hai tập hợp A = {1; 2; 4; 6} và B = {1; 2; 3; 4; 5; 6; 7; 8}. Xác định tập CBA.

Xem lời giải »


Câu 7:

Cho tập hợp H = (– ∞; 3) [9; + ∞). Hãy viết lại tập hợp H dưới dạng nêu tính chất đặc trưng.

Xem lời giải »