Cho A = (– ∞; – 2], B = [3; + ∞), C = (0; 4). Khi đó tập (A ∪ B) giao C là:
Câu hỏi:
Cho A = (– ∞; – 2], B = [3; + ∞), C = (0; 4). Khi đó tập (A ∪ B) ∩ C là:
A. [3; 4];
B. (– ∞; – 2] ∪ (3; + ∞);
C. [3; 4);
D. (– ∞; – 2) ∪ [3; + ∞).
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Ta có: A ∪ B = (– ∞; – 2) ∪ [3; + ∞)
(A ∪ B) ∩ C = (– ∞; – 2) ∪ [3; + ∞) ∩ (0; 4) = [3; 4).
Xem thêm bài tập Toán 10 CD có lời giải hay khác:
Câu 1:
Liệt kê các phần tử của tập hợp E = {x ∈ ℕ| 2x2 – 3x + 1 = 0}:
Xem lời giải »
Câu 2:
Cho tập hợp A = {1; 3; 5; 7}. Tập hợp A có bao nhiêu tập con có hai phần tử?
Xem lời giải »
Câu 3:
Cho các tập hợp A = {1; 5}, B = {1; 3; 5}. Chọn kết quả đúng trong các kết quả sau:
Xem lời giải »
Câu 4:
Cho tập hợp C = [–5; 3), D = (1; +∞). Khi đó C ∩ D là tập nào sau đây?
Xem lời giải »
Câu 5:
Cho hai tập hợp A = {x ∈ ℤ| (x2 – 10x + 21)(x3 – x) = 0}, B = {x ∈ ℤ| – 3 < 2x + 1 < 5}. Khi đó tập X = A \ B là:
Xem lời giải »
Câu 6:
Cho hai tập hợp A = {1; 2; 4; 6} và B = {1; 2; 3; 4; 5; 6; 7; 8}. Xác định tập CBA.
Xem lời giải »
Câu 7:
Cho tập hợp H = (– ∞; 3) ∪ [9; + ∞). Hãy viết lại tập hợp H dưới dạng nêu tính chất đặc trưng.
Xem lời giải »