Cho các số 0; 1; 2; 3; 4. Lập được bao nhiêu số có bốn chữ số khác nhau từ các số đã cho. A. 32; B. 120; C. 60; D. 96.


Câu hỏi:

Cho các số 0; 1; 2; 3; 4. Lập được bao nhiêu số có bốn chữ số khác nhau từ các số đã cho.
A. 32;
B. 120;
C. 60;
D. 96.

Trả lời:

Hướng dẫn giải

Đáp án đúng là: D

Có 4 cách chọn chữ số hàng nghìn (do số 0 không thể đứng ở chữ số hàng nghìn)

Có 4 cách chọn chữ số hàng trăm (do phải khác với chữ số hàng nghìn)

Có 3 cách chọn chữ số hàng chục (do phải khác với chữ số hàng nghìn, hàng trăm)

Có 2 cách chọn chữ số hàng đơn vị (do phải khác với chữ số hàng nghìn, chữ số hàng trăm, chữ số hàng chục)

Số các số có bốn chữ số khác nhau được lập từ các số đã cho là:

4 . 4 . 3 . 2 = 96 (số).

Xem thêm bài tập Toán 10 Cánh diều có lời giải hay khác:

Câu 1:

Một tổ có 8 học sinh trong đó có 1 bạn tên Cường và một bạn tên Nam. Hỏi số cách sắp xếp 8 học sinh đó thành một hàng sao cho Cường đứng đầu hàng và Nam đứng cuối hàng?

Xem lời giải »


Câu 2:

Có bao nhiêu cách xếp 5 người ngồi vào một dãy ghế gồm có 6 chiếc ghế, biết mỗi người ngồi vào một ghế.

Xem lời giải »


Câu 3:

Có 10 lớp khối 10, mỗi lớp cử 1 bạn nam và 1 bạn nữ đi tham gia đại hội Đoàn trường. Trong kỳ đại hội, cán bộ đoàn chọn một bạn nam và một bạn nữ lên phát biểu. Hỏi có tổng số bao nhiêu cách chọn?

Xem lời giải »


Câu 4:

Có 6 bông hoa hồng, 5 bông hoa cúc và 6 bông hướng dương (các bông hoa xem nhưu đôi một khác nhau). Có bao nhiêu cách lấy ra 3 bông hoa mà 3 bông hoa đó cùng loại.

Xem lời giải »


Câu 5:

Một cái hộp gồm có 10 bóng xanh và 8 bóng đỏ (các quả bóng đôi một khác nhau). Chọn trong hộp ra hai quả bóng. Có bao nhiêu cách để chọn được hai quả bóng khác màu.

Xem lời giải »


Câu 6:

Xét khai triển của \({\left( {2x + \frac{1}{2}} \right)^4}\). Gọi a là hệ số của x2 và b là hệ số của x trong khai triển. Tổng a + b là:

Xem lời giải »