Phương trình tiếp tuyến d của đường tròn (C): x^2 + y^2 – 3x – y = 0 tại điểm N(1; – 1) là: A. d: x + 3y – 2 = 0; B. d: x – 3y + 4 = 0; C. d: x – 3y – 4 = 0; D. d: x + 3y + 2 = 0.
Câu hỏi:
Phương trình tiếp tuyến d của đường tròn (C): x2 + y2 – 3x – y = 0 tại điểm N(1; – 1) là:
A. d: x + 3y – 2 = 0;
B. d: x – 3y + 4 = 0;
C. d: x – 3y – 4 = 0;
D. d: x + 3y + 2 = 0.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Xét phương trình (C): x2 + y2 – 3x – y = 0 ⇔ \({\left( {x - \frac{3}{2}} \right)^2} + {\left( {y - \frac{1}{2}} \right)^2} = \frac{5}{2}\).
Khi đó đường tròn (C) có tâm \[I\left( {\frac{3}{2};\frac{1}{2}} \right)\] nên tiếp tuyến tại N có VTPT là:
\[\vec n = \overrightarrow {IN} = \left( { - \frac{1}{2}; - \frac{3}{2}} \right) = - \frac{1}{2}\left( {1;3} \right),\]
Nên có phương trình là: 1(x – 1) +3(y + 1) = 0\[ \Leftrightarrow \]x + 3y + 2 = 0.
Xem thêm bài tập Toán 10 CD có lời giải hay khác:
Câu 1:
Cho \[\overrightarrow a \] = (–2m; 2), \[\overrightarrow b \]= (2; –7n). Tìm giá trị của m và n để tọa độ của vectơ \[\overrightarrow a - \overrightarrow b \] = (6; –5).
Xem lời giải »
Câu 2:
Cho A (2; –4), B (–5; 3). Tìm tọa độ của \[\overrightarrow {AB} \].
Xem lời giải »
Câu 3:
Trong hệ tọa độ Oxy cho tam giác ABC có B (9 ; 7), C (11 ; –1). Gọi M, N lần lượt là trung điểm của AB, AC. Tìm tọa độ vectơ \[\overrightarrow {MN} \]?
Xem lời giải »
Câu 4:
Trong hệ tọa độ Oxy cho \[\overrightarrow k \]= (5 ; 2), \[\overrightarrow n \] = (10 ; 8). Tìm tọa độ của vectơ \[3\overrightarrow k - 2\overrightarrow n \].
Xem lời giải »
Câu 5:
Viết phương trình tiếp tuyến của đường tròn \[\left( C \right):{x^2} + {y^2} + 4x + 4y - 17 = 0\],
biết tiếp tuyến vuông góc đường thẳng d: 3x – 4y – 2018 = 0.
Xem lời giải »
Câu 6:
Elip \(\left( E \right):4{x^2} + 16{y^2} = 1\) có độ dài trục bé bằng:
Xem lời giải »
Câu 7:
Đường thẳng nào là đường chuẩn của parabol \[{y^2} = 2x\]
Xem lời giải »
Câu 8:
Elip \[\left( E \right):\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{4} = 1\] có tiêu cự bằng:
Xem lời giải »