Trong mặt phẳng tọa độ Oxy, cho vecto OA = ( a1;a2 ). Khi đó hoành độ và tung độ của vecto OA lần lượt là:
Câu hỏi:
Trong mặt phẳng tọa độ Oxy, cho \(\overrightarrow {OA} = \left( {{a_1};{a_2}} \right)\). Khi đó hoành độ và tung độ của \(\overrightarrow {OA} \) lần lượt là:
A. a1 và a2;
B. a2 và a1;
C. \({a_1}\vec i\) và \({a_2}\vec j\);
D. –a1 và –a2.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Nếu \(\overrightarrow {OA} = \left( {{a_1};{a_2}} \right)\) thì ta gọi:
⦁ a1 là hoành độ của \(\overrightarrow {OA} \);
⦁ a2 là tung độ của \(\overrightarrow {OA} \).
Vậy ta chọn phương án A.
Xem thêm bài tập Toán 10 CD có lời giải hay khác:
Câu 1:
Để xác định hoành độ của điểm K tùy ý trong mặt phẳng tọa độ Oxy, ta thực hiện như sau:
Xem lời giải »
Câu 2:
Trong mặt phẳng tọa độ Oxy, cho \(\vec u = \left( {2;7} \right)\). Kết luận nào sau đây đúng?
Xem lời giải »
Câu 3:
Trong mặt phẳng tọa độ Oxy, cho G(3; 5). Tọa độ của \(\overrightarrow {OG} \) là:
Xem lời giải »
Câu 4:
Trong mặt phẳng tọa độ Oxy, cho \(\vec u = \left( {{u_1};{u_2}} \right)\) và \(\vec v = \left( {{v_1};{v_2}} \right)\). Kết luận nào sau đây đúng?
Xem lời giải »