Trong mặt phẳng tọa độ Oxy, cho vecto OA = ( a1;a2 ). Khi đó hoành độ và tung độ của vecto OA lần lượt là:


Câu hỏi:

Trong mặt phẳng tọa độ Oxy, cho \(\overrightarrow {OA} = \left( {{a_1};{a_2}} \right)\). Khi đó hoành độ và tung độ của \(\overrightarrow {OA} \) lần lượt là:

A. a1 và a2;
B. a2 và a1;
C. \({a_1}\vec i\) và \({a_2}\vec j\);
D. –a1 và –a2.

Trả lời:

Hướng dẫn giải

Đáp án đúng là: A

Nếu \(\overrightarrow {OA} = \left( {{a_1};{a_2}} \right)\) thì ta gọi:

a1 là hoành độ của \(\overrightarrow {OA} \);

a2 là tung độ của \(\overrightarrow {OA} \).

Vậy ta chọn phương án A.

Xem thêm bài tập Toán 10 CD có lời giải hay khác:

Câu 1:

Để xác định hoành độ của điểm K tùy ý trong mặt phẳng tọa độ Oxy, ta thực hiện như sau:

Xem lời giải »


Câu 2:

Trong mặt phẳng tọa độ Oxy, cho \(\vec u = \left( {2;7} \right)\). Kết luận nào sau đây đúng?

Xem lời giải »


Câu 3:

Trong mặt phẳng tọa độ Oxy, cho G(3; 5). Tọa độ của \(\overrightarrow {OG} \) là:

Xem lời giải »


Câu 4:

Trong mặt phẳng tọa độ Oxy, cho \(\vec u = \left( {{u_1};{u_2}} \right)\) và \(\vec v = \left( {{v_1};{v_2}} \right)\). Kết luận nào sau đây đúng?

Xem lời giải »