Trong mặt phẳng tọa độ Oxy, cho vec u = ( u1; u2) và (vec v = ( v1; v2). Kết luận nào sau đây đúng? A. vec u = vec v{u1} = {v1}\\{u_2} = {v_2}
Câu hỏi:
Trong mặt phẳng tọa độ Oxy, cho \(\vec u = \left( {{u_1};{u_2}} \right)\) và \(\vec v = \left( {{v_1};{v_2}} \right)\). Kết luận nào sau đây đúng?
A. \(\vec u = \vec v \Leftrightarrow \left\{ \begin{array}{l}{u_1} = {v_1}\\{u_2} = {v_2}\end{array} \right.\);
B. \(\vec u = - \vec v \Leftrightarrow \left\{ \begin{array}{l}{u_1} = {v_1}\\{u_2} = {v_2}\end{array} \right.\);
C. \(\vec u = \vec v \Leftrightarrow \left\{ \begin{array}{l}{u_1} = {v_2}\\{u_2} = {v_1}\end{array} \right.\);
D. \(\vec u = \vec v \Leftrightarrow \left\{ \begin{array}{l}{u_1} = - {v_1}\\{u_2} = - {v_2}\end{array} \right.\).
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Trong mặt phẳng tọa độ Oxy, cho \(\vec u = \left( {{u_1};{u_2}} \right)\) và \(\vec v = \left( {{v_1};{v_2}} \right)\). Ta có:
\(\vec u = \vec v \Leftrightarrow \left\{ \begin{array}{l}{u_1} = {v_1}\\{u_2} = {v_2}\end{array} \right.\)
Do đó ta chọn phương án A.
Xem thêm bài tập Toán 10 CD có lời giải hay khác:
Câu 1:
Trong mặt phẳng tọa độ Oxy, cho \(\overrightarrow {OA} = \left( {{a_1};{a_2}} \right)\). Khi đó hoành độ và tung độ của \(\overrightarrow {OA} \) lần lượt là:
Xem lời giải »
Câu 2:
Để xác định hoành độ của điểm K tùy ý trong mặt phẳng tọa độ Oxy, ta thực hiện như sau:
Xem lời giải »
Câu 3:
Trong mặt phẳng tọa độ Oxy, cho \(\vec u = \left( {2;7} \right)\). Kết luận nào sau đây đúng?
Xem lời giải »
Câu 4:
Trong mặt phẳng tọa độ Oxy, cho G(3; 5). Tọa độ của \(\overrightarrow {OG} \) là:
Xem lời giải »
Câu 6:
Trong mặt phẳng tọa độ Oxy, cho hai điểm \(M\left( {{x_M};{y_M}} \right)\) và \(N\left( {{x_N};{y_N}} \right)\). Khi đó ta có tọa độ \(\overrightarrow {MN} \) là:
Xem lời giải »