Cho parabol y = ax^2 + bx + 4 có trục đối xứng là đường thẳng x = 1/3 và đi qua điểm A(1; 3). Tổng giá trị a + 2b bằng: A. - 1/2; B. 1; C. 1/2; D. –1.
Câu hỏi:
Cho parabol y = ax2 + bx + 4 có trục đối xứng là đường thẳng \(x = \frac{1}{3}\) và đi qua điểm A(1; 3). Tổng giá trị a + 2b bằng:
A. \( - \frac{1}{2}\);
B. 1;
C. \(\frac{1}{2}\);
D. –1.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Vì parabol có trục đối xứng là đường thẳng \(x = \frac{1}{3}\) nên ta có \( - \frac{b}{{2a}} = \frac{1}{3}\).
Suy ra –3b = 2a.
Tức là, 2a + 3b = 0 (1)
Theo đề, ta có parabol đi qua điểm A(1; 3).
Suy ra 3 = a.12 + b.1 + 4.
Khi đó a + b + 4 = 3.
Do đó a + b = –1 (2)
Từ (1), (2), ta có hệ phương trình: \(\left\{ \begin{array}{l}2a + 3b = 0\\a + b = - 1\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}a = - 3\\b = 2\end{array} \right.\).
Vì vậy a + 2b = –3 + 2.2 = 1.
Vậy ta chọn phương án B.