X

Toán lớp 10 Chân trời sáng tạo

Cho parabol y = ax^2 + bx + 4 có trục đối xứng là đường thẳng x = 1/3 và đi qua điểm A(1; 3). Tổng giá trị a + 2b bằng: A. - 1/2; B. 1; C. 1/2; D. –1.


Câu hỏi:

Cho parabol y = ax2 + bx + 4 có trục đối xứng là đường thẳng \(x = \frac{1}{3}\) và đi qua điểm A(1; 3). Tổng giá trị a + 2b bằng:
A. \( - \frac{1}{2}\);
B. 1;
C. \(\frac{1}{2}\);
D. –1.

Trả lời:

Hướng dẫn giải

Đáp án đúng là: B

Vì parabol có trục đối xứng là đường thẳng \(x = \frac{1}{3}\) nên ta có \( - \frac{b}{{2a}} = \frac{1}{3}\).

Suy ra –3b = 2a.

Tức là, 2a + 3b = 0    (1)

Theo đề, ta có parabol đi qua điểm A(1; 3).

Suy ra 3 = a.12 + b.1 + 4.

Khi đó a + b + 4 = 3.

Do đó a + b = –1        (2)

Từ (1), (2), ta có hệ phương trình: \(\left\{ \begin{array}{l}2a + 3b = 0\\a + b = - 1\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}a = - 3\\b = 2\end{array} \right.\).

Vì vậy a + 2b = –3 + 2.2 = 1.

Vậy ta chọn phương án B.

Xem thêm bài tập trắc nghiệm Toán 10 CTST có lời giải hay khác:

Câu 1:

Cho hàm số f(x) = ax2 + bx + c (a, b, c ≠ 0) có đồ thị như hình vẽ bên.

Media VietJack

Biết f(c) = c. Giá trị của b là:

Xem lời giải »


Câu 2:

Biết rằng hàm số y = ax2 + bx + c (a ≠ 0) đạt giá trị nhỏ nhất bằng 4 tại x = 2 và có đồ thị đi qua điểm A(0; 6). Giá trị biểu thức P = abc bằng

Xem lời giải »


Câu 3:

Cho hàm số \(y = f\left( x \right) = \frac{{x + 2}}{{{x^2} + 1}}\). Gọi (C) là đồ thị của hàm số đã cho và điểm M(m + 1; 1). Giá trị của tham số m để điểm M nằm trên đồ thị (C) là:

Xem lời giải »


Câu 4:

Cho hàm số \(f\left( x \right) = \sqrt {16 - {x^2}} + \sqrt {2023x + 2024m} \) (với m là tham số). Để tập xác định của hàm số chỉ có đúng một phần tử thì \(m = \frac{a}{b}\) (a ℤ, b *), với \(\frac{a}{b}\) là phân số tối giản. Giá trị a + b bằng

Xem lời giải »