X

Toán lớp 10 Chân trời sáng tạo

Cho tam giác ABC có b^2 + c^2-a^2/2bc > 0. Khi đó: A. góc A < 90^0; B. góc A = 90^0; C. góc A > 90^0. D. Không thể kết luận được gì số đo của góc A.


Câu hỏi:

Cho tam giác ABC có \[\frac{{{b^2} + {c^2}--{a^2}}}{{2bc}} > 0\]. Khi đó:

A. \(\widehat A < 90^\circ ;\)
B. \(\widehat A = 90^\circ ;\)
C. \(\widehat A > 90^\circ ;\)
D. Không thể kết luận được gì số đo của góc A.

Trả lời:

Hướng dẫn giải

Đáp án đúng là:

Theo hệ quả định lí côsin ta có: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\).

\[\frac{{{b^2} + {c^2}--{a^2}}}{{2bc}} > 0\] nên cosA > 0.

Do đó \(\widehat A < 90^\circ .\)

Vậy ta chọn phương án A.

Xem thêm bài tập trắc nghiệm Toán 10 CTST có lời giải hay khác:

Câu 1:

Cho tam giác ABC bất kì có BC = a, AC = b và AB = c. Đẳng thức nào đúng?

Xem lời giải »


Câu 2:

Cho tam giác ABCAB = c, BC = a và AC = b. Gọi R là bán kính đường tròn ngoại tiếp tam giác ABC. Trong các mệnh đề sau, mệnh đề nào sai?

Xem lời giải »


Câu 3:

Cho tam giác ABC bất kì có BC = a, AC = b và AB = c. Công thức tính diện tích tam giác ABC nào sau đây là đúng:

Xem lời giải »


Câu 4:

Cho tam giác ABC bất kì có BC = a, AC = b và AB = c. Gọi ha, hb, hc độ dài các đường cao lần lượt ứng với các cạnh BC, CA, AB. Biết tam giác ABC có diện tích là S. Khẳng định nào sau đây là đúng?

Xem lời giải »