X

Toán lớp 10 Chân trời sáng tạo

Chọn ngẫu nhiên một số tự nhiên có 4 chữ số khác nhau. Gọi A là biến cố “Số tự nhiên


Câu hỏi:

Chọn ngẫu nhiên một số tự nhiên có 4 chữ số khác nhau. Gọi A là biến cố “Số tự nhiên được chọn gồm 4 số 3; 4; 5; 6”. Xác suất của biến cố A là:

A. 1189

B. 421

C. 1504

D. 263

Trả lời:

Hướng dẫn giải

Đáp án đúng là: A

+) Gọi số tự nhiên gồm 4 chữ số khác nhauabcd¯ .

Có tất có 10 chữ số là {0; 1; 2; …; 9}.

• Chọn a có 9 cách chọn từ các chữ số trong {1; 2; …; 8; 9}.

• Chọn 3 chữ số còn lại trong 9 chữ số và xếp vào 3 vị trí b, c, d có A93  cách.

Do đó chọn ngẫu nhiên một số tự nhiên có 4 chữ số khác nhau (có quan tâm đến thứ tự) thì có A93 = 4 536 cách chọn.

Tức là ta có số phần tử của không gian mẫu n(Ω) = 4 536.

+) Số tự nhiên được chọn gồm 4 số 3; 4; 5; 6.

• Chọn a có 4 cách chọn từ các chữ số trong {3; 4; 5; 6}.

• Chọn b có 3 cách chọn một chữ số từ ba chữ số còn lại sau khi chọn a.

• Chọn c có 2 cách chọn một chữ số từ ba chữ số còn lại sau khi chọn a, b.

• Chọn d có 1 cách chọn một chữ số còn lại sau khi chọn a, b, c.

Số phần tử của A là: n(A) = 4.3.2 = 24.

Hoặc ta cũng có thể tính n(A) như sau:

Chọn 4 chữ số trong tập hợp các chữ số {3; 4; 5; 6} và xếp vào 4 vị trí a, b, c, d sẽ có 4! = 24 cách.

Xác suất của biến cố A là: PA=nAnΩ=244536=1189 .

Vậy ta chọn phương án A.

Xem thêm bài tập trắc nghiệm Toán 10 CTST có lời giải hay khác:

Câu 1:

Từ một hộp chứa 11 quả cầu đỏ và 4 quả cầu xanh, lấy ngẫu nhiên đồng thời 3 quả cầu. Xác suất để lấy được 3 quả cầu màu xanh là:

Xem lời giải »


Câu 2:

Tung một đồng tiền và gieo một con xúc xắc một lần. Số phần tử của không gian mẫu là:

Xem lời giải »


Câu 3:

Gieo ngẫu nhiên một xúc xắc 6 mặt cân đối và đồng chất. Xác suất của biến cố A: “Mặt xuất hiện có số chấm chia hết cho 3” là:

Xem lời giải »


Câu 4:

Một bể cá gồm 5 con cá Koi và 7 con cá vàng. Một người vớt ngẫu nhiên 4 con cá từ bể cá đó. Số kết quả thuận lợi của biến cố X: “Vớt được 2 con cá Koi và 2 con cá vàng” là:

Xem lời giải »


Câu 5:

Một tổ có 9 học sinh, trong đó có 5 học sinh nam và 4 học sinh nữ được xếp thành hàng dọc. Xác suất sao cho 5 học sinh nam đứng kề nhau là:

Xem lời giải »